Multiscale and integrative single-cell Hi-C analysis with Higashi

被引:95
|
作者
Zhang, Ruochi [1 ]
Zhou, Tianming [1 ]
Ma, Jian [1 ]
机构
[1] Carnegie Mellon Univ, Sch Comp Sci, Computat Biol Dept, Pittsburgh, PA 15213 USA
基金
美国国家卫生研究院;
关键词
GENOME ARCHITECTURE; PRINCIPLES; DYNAMICS;
D O I
10.1038/s41587-021-01034-y
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Single-cell Hi-C (scHi-C) can identify cell-to-cell variability of three-dimensional (3D) chromatin organization, but the sparseness of measured interactions poses an analysis challenge. Here we report Higashi, an algorithm based on hypergraph representation learning that can incorporate the latent correlations among single cells to enhance overall imputation of contact maps. Higashi outperforms existing methods for embedding and imputation of scHi-C data and is able to identify multiscale 3D genome features in single cells, such as compartmentalization and TAD-like domain boundaries, allowing refined delineation of their cell-to-cell variability. Moreover, Higashi can incorporate epigenomic signals jointly profiled in the same cell into the hypergraph representation learning framework, as compared to separate analysis of two modalities, leading to improved embeddings for single-nucleus methyl-3C data. In an scHi-C dataset from human prefrontal cortex, Higashi identifies connections between 3D genome features and cell-type-specific gene regulation. Higashi can also potentially be extended to analyze single-cell multiway chromatin interactions and other multimodal single-cell omics data.
引用
收藏
页码:254 / +
页数:13
相关论文
共 50 条
  • [21] Single-cell Hi-C reveals cell-to-cell variability in chromosome structure
    Takashi Nagano
    Yaniv Lubling
    Tim J. Stevens
    Stefan Schoenfelder
    Eitan Yaffe
    Wendy Dean
    Ernest D. Laue
    Amos Tanay
    Peter Fraser
    Nature, 2013, 502 : 59 - 64
  • [22] A review and performance evaluation of clustering frameworks for single-cell Hi-C data
    Zhen, Caiwei
    Wang, Yuxian
    Geng, Jiaquan
    Han, Lu
    Li, Jingyi
    Peng, Jinghao
    Wang, Tao
    Hao, Jianye
    Shang, Xuequn
    Wei, Zhongyu
    Zhu, Peican
    Peng, Jiajie
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (06)
  • [23] Scool: a new data storage format for single-cell Hi-C data
    Wolff, Joachim
    Abdennur, Nezar
    Backofen, Rolf
    Gruening, Bjorn
    BIOINFORMATICS, 2021, 37 (14) : 2053 - 2054
  • [24] Inferential Structure Determination of Chromosomes from Single-Cell Hi-C Data
    Carstens, Simeon
    Nilges, Michael
    Habeck, Michael
    PLOS COMPUTATIONAL BIOLOGY, 2016, 12 (12)
  • [25] scHiCDiff: detecting differential chromatin interactions in single-cell Hi-C data
    Liu, Huiling
    Ma, Wenxiu
    BIOINFORMATICS, 2023, 39 (10)
  • [26] Comparison of computational methods for 3D genome analysis at single-cell Hi-C level
    Li, Xiao
    An, Ziyang
    Zhang, Zhihua
    METHODS, 2020, 181 : 52 - 61
  • [27] Single-cell Hi-C data enhancement with deep residual and generative adversarial networks
    Wang, Yanli
    Guo, Zhiye
    Cheng, Jianlin
    BIOINFORMATICS, 2023, 39 (08)
  • [28] Single-cell Hi-C discloses general principles of the individual genome folding in Drosophila
    Zakharova, V. S.
    Galitsyna, A. A.
    Polovnikov, K. E.
    Khrameeva, E. E.
    Logacheva, M. D.
    Mikhaleva, E. A.
    Vassetzky, E. S.
    Gavrilov, A. A.
    Shevelev, Y. Y.
    Nechaev, S. K.
    Ulianov, S. V.
    Razin, S. V.
    FEBS OPEN BIO, 2018, 8 : 65 - 66
  • [29] scHiCNorm: a software package to eliminate systematic biases in single-cell Hi-C data
    Liu, Tong
    Wang, Zheng
    BIOINFORMATICS, 2018, 34 (06) : 1046 - 1047
  • [30] Enhancing Single-Cell and Bulk Hi-C Data Using a Generative Transformer Model
    Gao, Ruoying
    Ferraro, Thomas N.
    Chen, Liang
    Zhang, Shaoqiang
    Chen, Yong
    BIOLOGY-BASEL, 2025, 14 (03):