Multiscale and integrative single-cell Hi-C analysis with Higashi

被引:95
|
作者
Zhang, Ruochi [1 ]
Zhou, Tianming [1 ]
Ma, Jian [1 ]
机构
[1] Carnegie Mellon Univ, Sch Comp Sci, Computat Biol Dept, Pittsburgh, PA 15213 USA
基金
美国国家卫生研究院;
关键词
GENOME ARCHITECTURE; PRINCIPLES; DYNAMICS;
D O I
10.1038/s41587-021-01034-y
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Single-cell Hi-C (scHi-C) can identify cell-to-cell variability of three-dimensional (3D) chromatin organization, but the sparseness of measured interactions poses an analysis challenge. Here we report Higashi, an algorithm based on hypergraph representation learning that can incorporate the latent correlations among single cells to enhance overall imputation of contact maps. Higashi outperforms existing methods for embedding and imputation of scHi-C data and is able to identify multiscale 3D genome features in single cells, such as compartmentalization and TAD-like domain boundaries, allowing refined delineation of their cell-to-cell variability. Moreover, Higashi can incorporate epigenomic signals jointly profiled in the same cell into the hypergraph representation learning framework, as compared to separate analysis of two modalities, leading to improved embeddings for single-nucleus methyl-3C data. In an scHi-C dataset from human prefrontal cortex, Higashi identifies connections between 3D genome features and cell-type-specific gene regulation. Higashi can also potentially be extended to analyze single-cell multiway chromatin interactions and other multimodal single-cell omics data.
引用
收藏
页码:254 / +
页数:13
相关论文
共 50 条
  • [11] Galaxy HiCExplorer 3: a web server for reproducible Hi-C, capture Hi-C and single-cell Hi-C data analysis, quality control and visualization
    Wolff, Joachim
    Rabbani, Leily
    Gilsbach, Ralf
    Richard, Gautier
    Manke, Thomas
    Backofen, Rolf
    Gruening, Bjoern A.
    NUCLEIC ACIDS RESEARCH, 2020, 48 (W1) : W177 - W184
  • [12] Comparison and critical assessment of single-cell Hi-C protocols
    Gridina, M.
    Taskina, A.
    Lagunov, T.
    Nurislamov, A.
    Kulikova, T.
    Krasikova, A.
    Fishman, V.
    HELIYON, 2022, 8 (10)
  • [13] scHiGex: predicting single-cell gene expression based on single-cell Hi-C data
    Shrestha, Bishal
    Siciliano, Andrew Jordan
    Zhu, Hao
    Liu, Tong
    Wang, Zheng
    NAR GENOMICS AND BIOINFORMATICS, 2025, 7 (01)
  • [14] Single-cell Hi-C: how modeling can augment experiment?
    Mali, Samira
    Tolokh, Igor S.
    Sharakhov, Igor V.
    Onufriev, Alexey V.
    BIOPHYSICAL JOURNAL, 2022, 121 (03) : 362A - 362A
  • [15] GiniQC: a measure for quantifying noise in single-cell Hi-C data
    Horton, Connor A.
    Alver, Burak H.
    Park, Peter J.
    BIOINFORMATICS, 2020, 36 (09) : 2902 - 2904
  • [16] A mini-review of single-cell Hi-C embedding methods
    Ma, Rui
    Huang, Jingong
    Jiang, Tao
    Ma, Wenxiu
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2024, 23 : 4027 - 4035
  • [17] scHiCTools: A computational toolbox for analyzing single-cell Hi-C data
    Li, Xinjun
    Feng, Fan
    Pu, Hongxi
    Leung, Wai Yan
    Liu, Jie
    PLOS COMPUTATIONAL BIOLOGY, 2021, 17 (05)
  • [18] scHiMe: predicting single-cell DNA methylation levels based on single-cell Hi-C data
    Zhu, Hao
    Liu, Tong
    Wang, Zheng
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (04)
  • [19] HiCDiff: single-cell Hi-C data denoising with diffusion models
    Wang, Yanli
    Cheng, Jianlin
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (04)
  • [20] Single-cell Hi-C reveals cell-to-cell variability in chromosome structure
    Nagano, Takashi
    Lubling, Yaniv
    Stevens, Tim J.
    Schoenfelder, Stefan
    Yaffe, Eitan
    Dean, Wendy
    Laue, Ernest D.
    Tanay, Amos
    Fraser, Peter
    NATURE, 2013, 502 (7469) : 59 - +