Nonlinear quantile regression estimation of longitudinal data

被引:24
|
作者
Karlsson, Andreas [1 ]
机构
[1] Uppsala Univ, Ctr Clin Res Vasteras, Cent Hosp, S-72189 Vasteras, Sweden
关键词
dependent errors; median regression; repeated measures; simulation study;
D O I
10.1080/03610910701723963
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article examines a weighted version of the quantile regression estimator as defined by Koenker and Bassett (1978), adjusted to the case of nonlinear longitudinal data. Using a four-parameter logistic growth function and error terms following an AR(1) model, different weights are used and compared in a simulation study. The findings indicate that the nonlinear quantile regression estimator is performing well, especially for the median regression case, that the differences between the weights are small, and that the estimator performs better when the correlation in the AR(1) model increases. A comparison is also made with the corresponding mean regression estimator, which is found to be less robust. Finally, the estimator is applied to a data set with growth patterns of two genotypes of soybean, which gives some insights into how the quantile regressions provide a more complete picture of the data than the mean regression.
引用
收藏
页码:114 / 131
页数:18
相关论文
共 50 条
  • [31] Empirical likelihood for quantile regression models with longitudinal data
    Wang, Huixia Judy
    Zhu, Zhongyi
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (04) : 1603 - 1615
  • [32] COPULA-BASED QUANTILE REGRESSION FOR LONGITUDINAL DATA
    Wang, Huixia Judy
    Feng, Xingdong
    Dong, Chen
    [J]. STATISTICA SINICA, 2019, 29 (01) : 245 - 264
  • [33] Quantile regression for longitudinal data with a working correlation model
    Fu, Liya
    Wang, You-Gan
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (08) : 2526 - 2538
  • [34] Quantile regression for incomplete longitudinal data with selection by death
    Jacqmin-Gadda, Helene
    Rouanet, Anais
    Mba, Robert D.
    Philipps, Viviane
    Dartigues, Jean-Francois
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2020, 29 (09) : 2697 - 2716
  • [35] Bayesian analysis of penalized quantile regression for longitudinal data
    A. Aghamohammadi
    S. Mohammadi
    [J]. Statistical Papers, 2017, 58 : 1035 - 1053
  • [36] Quantile regression of longitudinal data with informative observation times
    Chen, Xuerong
    Tang, Niansheng
    Zhou, Yong
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2016, 144 : 176 - 188
  • [37] Bayesian analysis of penalized quantile regression for longitudinal data
    Aghamohammadi, A.
    Mohammadi, S.
    [J]. STATISTICAL PAPERS, 2017, 58 (04) : 1035 - 1053
  • [38] Multikink quantile regression for longitudinal data with application to progesterone data analysis
    Wan, Chuang
    Zhong, Wei
    Zhang, Wenyang
    Zou, Changliang
    [J]. BIOMETRICS, 2023, 79 (02) : 747 - 760
  • [39] Symmetric regression quantile and its application to robust estimation for the nonlinear regression model
    Chen, LA
    Tran, LT
    Lin, LC
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2004, 126 (02) : 423 - 440
  • [40] Robust penalized quantile regression estimation for panel data
    Lamarche, Carlos
    [J]. JOURNAL OF ECONOMETRICS, 2010, 157 (02) : 396 - 408