Nonlinear quantile regression estimation of longitudinal data

被引:24
|
作者
Karlsson, Andreas [1 ]
机构
[1] Uppsala Univ, Ctr Clin Res Vasteras, Cent Hosp, S-72189 Vasteras, Sweden
关键词
dependent errors; median regression; repeated measures; simulation study;
D O I
10.1080/03610910701723963
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article examines a weighted version of the quantile regression estimator as defined by Koenker and Bassett (1978), adjusted to the case of nonlinear longitudinal data. Using a four-parameter logistic growth function and error terms following an AR(1) model, different weights are used and compared in a simulation study. The findings indicate that the nonlinear quantile regression estimator is performing well, especially for the median regression case, that the differences between the weights are small, and that the estimator performs better when the correlation in the AR(1) model increases. A comparison is also made with the corresponding mean regression estimator, which is found to be less robust. Finally, the estimator is applied to a data set with growth patterns of two genotypes of soybean, which gives some insights into how the quantile regressions provide a more complete picture of the data than the mean regression.
引用
收藏
页码:114 / 131
页数:18
相关论文
共 50 条
  • [21] Distributed quantile regression for longitudinal big data
    Ye Fan
    Nan Lin
    Liqun Yu
    [J]. Computational Statistics, 2024, 39 : 751 - 779
  • [22] Distributed quantile regression for longitudinal big data
    Fan, Ye
    Lin, Nan
    Yu, Liqun
    [J]. COMPUTATIONAL STATISTICS, 2024, 39 (02) : 751 - 779
  • [23] Bayesian quantile regression for longitudinal data models
    Luo, Youxi
    Lian, Heng
    Tian, Maozai
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2012, 82 (11) : 1635 - 1649
  • [24] Efficient parameter estimation via modified Cholesky decomposition for quantile regression with longitudinal data
    Lv, Jing
    Guo, Chaohui
    [J]. COMPUTATIONAL STATISTICS, 2017, 32 (03) : 947 - 975
  • [25] Efficient parameter estimation via modified Cholesky decomposition for quantile regression with longitudinal data
    Jing Lv
    Chaohui Guo
    [J]. Computational Statistics, 2017, 32 : 947 - 975
  • [26] Asymptotic properties of a particular nonlinear regression quantile estimation
    Kim, TS
    Kim, HK
    Hur, S
    [J]. STATISTICS & PROBABILITY LETTERS, 2002, 60 (04) : 387 - 394
  • [27] Using Nonlinear Quantile Regression for the Estimation of Software Cost
    De Andres, J.
    Landajo, M.
    Lorca, P.
    [J]. HYBRID ARTIFICIAL INTELLIGENT SYSTEMS (HAIS 2018), 2018, 10870 : 422 - 432
  • [28] Efficient quantile marginal regression for longitudinal data with dropouts
    Cho, Hyunkeun
    Hong, Hyokyoung Grace
    Kim, Mi-Ok
    [J]. BIOSTATISTICS, 2016, 17 (03) : 561 - 575
  • [29] A DYNAMIC QUANTILE REGRESSION TRANSFORMATION MODEL FOR LONGITUDINAL DATA
    Mu, Yunming
    Wei, Ying
    [J]. STATISTICA SINICA, 2009, 19 (03) : 1137 - 1153
  • [30] Empirical likelihood for quantile regression models with longitudinal data
    Wang, Huixia Judy
    Zhu, Zhongyi
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (04) : 1603 - 1615