Nonlinear quantile regression estimation of longitudinal data

被引:24
|
作者
Karlsson, Andreas [1 ]
机构
[1] Uppsala Univ, Ctr Clin Res Vasteras, Cent Hosp, S-72189 Vasteras, Sweden
关键词
dependent errors; median regression; repeated measures; simulation study;
D O I
10.1080/03610910701723963
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article examines a weighted version of the quantile regression estimator as defined by Koenker and Bassett (1978), adjusted to the case of nonlinear longitudinal data. Using a four-parameter logistic growth function and error terms following an AR(1) model, different weights are used and compared in a simulation study. The findings indicate that the nonlinear quantile regression estimator is performing well, especially for the median regression case, that the differences between the weights are small, and that the estimator performs better when the correlation in the AR(1) model increases. A comparison is also made with the corresponding mean regression estimator, which is found to be less robust. Finally, the estimator is applied to a data set with growth patterns of two genotypes of soybean, which gives some insights into how the quantile regressions provide a more complete picture of the data than the mean regression.
引用
收藏
页码:114 / 131
页数:18
相关论文
共 50 条
  • [41] Robust penalized quantile regression estimation for panel data
    Lamarche, Carlos
    [J]. JOURNAL OF ECONOMETRICS, 2010, 157 (02) : 396 - 408
  • [42] Nonparametric Quantile Regression Estimation for Functional Dependent Data
    Dabo-Niang, Sophie
    Laksaci, Ali
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2012, 41 (07) : 1254 - 1268
  • [43] Marginal quantile regression for varying coefficient models with longitudinal data
    Weihua Zhao
    Weiping Zhang
    Heng Lian
    [J]. Annals of the Institute of Statistical Mathematics, 2020, 72 : 213 - 234
  • [44] Wild bootstrap inference for penalized quantile regression for longitudinal data
    Lamarche, Carlos
    Parker, Thomas
    [J]. JOURNAL OF ECONOMETRICS, 2023, 235 (02) : 1799 - 1826
  • [45] Bayesian Quantile Regression for Longitudinal Studies with Nonignorable Missing Data
    Yuan, Ying
    Yin, Guosheng
    [J]. BIOMETRICS, 2010, 66 (01) : 105 - 114
  • [46] Marginal quantile regression for varying coefficient models with longitudinal data
    Zhao, Weihua
    Zhang, Weiping
    Lian, Heng
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2020, 72 (01) : 213 - 234
  • [47] Weighted quantile regression for longitudinal data using empirical likelihood
    Yuan XiaoHui
    Lin Nan
    Dong XiaoGang
    Liu TianQing
    [J]. SCIENCE CHINA-MATHEMATICS, 2017, 60 (01) : 147 - 164
  • [48] Parametric Modeling of Quantile Regression Coefficient Functions With Longitudinal Data
    Frumento, Paolo
    Bottai, Matteo
    Fernandez-Val, Ivan
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2021, 116 (534) : 783 - 797
  • [49] A CUSUM test for change point in quantile regression for longitudinal data
    Abdelwahab, Aya S.
    Gad, Ahmed M.
    Abdrabou, Abdelnaser S.
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024, 53 (08) : 3788 - 3801
  • [50] Smoothing combined estimating equations in quantile regression for longitudinal data
    Leng, Chenlei
    Zhang, Weiping
    [J]. STATISTICS AND COMPUTING, 2014, 24 (01) : 123 - 136