Wild bootstrap inference for penalized quantile regression for longitudinal data

被引:1
|
作者
Lamarche, Carlos [1 ]
Parker, Thomas [2 ]
机构
[1] Univ Kentucky, Dept Econ, 223G Gatton Coll Business & Econ, Lexington, KY 40506 USA
[2] Univ Waterloo, Dept Econ, 200 Univ Ave West, Waterloo, ON N2L 3G1, Canada
关键词
Quantile regression; Panel data; Penalized estimator; Bootstrap inference; PANEL-DATA MODELS; ORACLE INEQUALITIES; VARIABLE SELECTION; UNIFORM INFERENCE; BIAS REDUCTION; ASYMPTOTICS;
D O I
10.1016/j.jeconom.2022.11.011
中图分类号
F [经济];
学科分类号
02 ;
摘要
The existing theory of penalized quantile regression for longitudinal data has focused primarily on point estimation. In this work, we investigate statistical inference. We propose a wild residual bootstrap procedure and show that it is asymptotically valid for approximating the distribution of the penalized estimator. The model puts no restrictions on individual effects, and the estimator achieves consistency by letting the shrinkage decay in importance asymptotically. The new method is easy to implement and simulation studies show that it has accurate small sample behavior in comparison with existing procedures. Finally, we illustrate the new approach using U.S. Census data to estimate a model that includes more than eighty thousand parameters.& COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页码:1799 / 1826
页数:28
相关论文
共 50 条
  • [1] Wild residual bootstrap inference for penalized quantile regression with heteroscedastic errors
    Wang, Lan
    Van Keilegom, Ingrid
    Maidman, Adam
    [J]. BIOMETRIKA, 2018, 105 (04) : 859 - 872
  • [2] Bootstrap Inference for Panel Data Quantile Regression
    Galvao, Antonio F.
    Parker, Thomas
    Xiao, Zhijie
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2024, 42 (02) : 628 - 639
  • [3] Bayesian analysis of penalized quantile regression for longitudinal data
    Aghamohammadi, A.
    Mohammadi, S.
    [J]. STATISTICAL PAPERS, 2017, 58 (04) : 1035 - 1053
  • [4] Bayesian analysis of penalized quantile regression for longitudinal data
    A. Aghamohammadi
    S. Mohammadi
    [J]. Statistical Papers, 2017, 58 : 1035 - 1053
  • [5] Wild bootstrap for quantile regression
    Feng, Xingdong
    He, Xuming
    Hu, Jianhua
    [J]. BIOMETRIKA, 2011, 98 (04) : 995 - 999
  • [6] On Bootstrap Inference for Quantile Regression Panel Data: A Monte Carlo Study
    Galvao, Antonio F.
    Montes-Rojas, Gabriel
    [J]. ECONOMETRICS, 2015, 3 (03): : 654 - 666
  • [7] Penalized weighted smoothed quantile regression for high-dimensional longitudinal data
    Song, Yanan
    Han, Haohui
    Fu, Liya
    Wang, Ting
    [J]. STATISTICS IN MEDICINE, 2024, 43 (10) : 2007 - 2042
  • [8] Bootstrap Inference for Quantile-based Modal Regression
    Zhang, Tao
    Kato, Kengo
    Ruppert, David
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2023, 118 (541) : 122 - 134
  • [9] Penalized quantile regression for dynamic panel data
    Galvao, Antonio F.
    Montes-Rojas, Gabriel V.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (11) : 3476 - 3497
  • [10] ADMM for Penalized Quantile Regression in Big Data
    Yu, Liqun
    Lin, Nan
    [J]. INTERNATIONAL STATISTICAL REVIEW, 2017, 85 (03) : 494 - 518