Bootstrap Inference for Quantile-based Modal Regression

被引:5
|
作者
Zhang, Tao [1 ]
Kato, Kengo [1 ]
Ruppert, David [1 ,2 ]
机构
[1] Cornell Univ, Dept Stat & Data Sci, Ithaca, NY 14853 USA
[2] Cornell Univ, Sch Operat Res & Informat Engn, Ithaca, NY USA
关键词
High-dimensional CLT; Kernel smoothing; Modal regression; Pivotal bootstrap; Quantile regression; MEASUREMENT ERROR; ESTIMATORS; SUPREMA; MODEL;
D O I
10.1080/01621459.2021.1918130
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we develop uniform inference methods for the conditional mode based on quantile regression. Specifically, we propose to estimate the conditional mode by minimizing the derivative of the estimated conditional quantile function defined by smoothing the linear quantile regression estimator, and develop two bootstrap methods, a novel pivotal bootstrap and the nonparametric bootstrap, for our conditional mode estimator. Building on high-dimensional Gaussian approximation techniques, we establish the validity of simultaneous confidence rectangles constructed from the two bootstrap methods for the conditional mode. We also extend the preceding analysis to the case where the dimension of the covariate vector is increasing with the sample size. Finally, we conduct simulation experiments and a real data analysis using the U.S. wage data to demonstrate the finite sample performance of our inference method. The supplemental materials include the wage dataset, R codes and an appendix containing proofs of the main results, additional simulation results, discussion of model misspecification and quantile crossing, and additional details of the numerical implementation.
引用
收藏
页码:122 / 134
页数:13
相关论文
共 50 条
  • [1] Bootstrap Inference for Panel Data Quantile Regression
    Galvao, Antonio F.
    Parker, Thomas
    Xiao, Zhijie
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2024, 42 (02) : 628 - 639
  • [2] Distributed inference for the quantile regression model based on the random weighted bootstrap
    Xiao, Peiwen
    Liu, Xiaohui
    Li, Anna
    Pan, Guangming
    [J]. INFORMATION SCIENCES, 2024, 680
  • [3] Quantile-Based Inference for Tempered Stable Distributions
    Fallahgoul, Hasan A.
    Veredas, David
    Fabozzi, Frank J.
    [J]. COMPUTATIONAL ECONOMICS, 2019, 53 (01) : 51 - 83
  • [4] Quantile-Based Inference for Tempered Stable Distributions
    Hasan A. Fallahgoul
    David Veredas
    Frank J. Fabozzi
    [J]. Computational Economics, 2019, 53 : 51 - 83
  • [5] The tenets of quantile-based inference in Bayesian models
    Perepolkin, Dmytro
    Goodrich, Benjamin
    Sahlin, Ullrika
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2023, 187
  • [6] Cluster-Robust Bootstrap Inference in Quantile Regression Models
    Hagemann, Andreas
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2017, 112 (517) : 446 - 456
  • [7] On Quantile-based Asymmetric Family of Distributions: Properties and Inference
    Gijbels, Irene
    Karim, Rezaul
    Verhasselt, Anneleen
    [J]. INTERNATIONAL STATISTICAL REVIEW, 2019, 87 (03) : 471 - 504
  • [8] Wild bootstrap inference for penalized quantile regression for longitudinal data
    Lamarche, Carlos
    Parker, Thomas
    [J]. JOURNAL OF ECONOMETRICS, 2023, 235 (02) : 1799 - 1826
  • [9] Semiparametric quantile regression using family of quantile-based asymmetric densities
    Gijbels, Irene
    Karim, Rezaul
    Verhasselt, Anneleen
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2021, 157
  • [10] On Bootstrap Inference for Quantile Regression Panel Data: A Monte Carlo Study
    Galvao, Antonio F.
    Montes-Rojas, Gabriel
    [J]. ECONOMETRICS, 2015, 3 (03): : 654 - 666