Bootstrap Inference for Quantile-based Modal Regression
被引:5
|
作者:
Zhang, Tao
论文数: 0引用数: 0
h-index: 0
机构:
Cornell Univ, Dept Stat & Data Sci, Ithaca, NY 14853 USACornell Univ, Dept Stat & Data Sci, Ithaca, NY 14853 USA
Zhang, Tao
[1
]
Kato, Kengo
论文数: 0引用数: 0
h-index: 0
机构:
Cornell Univ, Dept Stat & Data Sci, Ithaca, NY 14853 USACornell Univ, Dept Stat & Data Sci, Ithaca, NY 14853 USA
Kato, Kengo
[1
]
Ruppert, David
论文数: 0引用数: 0
h-index: 0
机构:
Cornell Univ, Dept Stat & Data Sci, Ithaca, NY 14853 USA
Cornell Univ, Sch Operat Res & Informat Engn, Ithaca, NY USACornell Univ, Dept Stat & Data Sci, Ithaca, NY 14853 USA
Ruppert, David
[1
,2
]
机构:
[1] Cornell Univ, Dept Stat & Data Sci, Ithaca, NY 14853 USA
[2] Cornell Univ, Sch Operat Res & Informat Engn, Ithaca, NY USA
In this article, we develop uniform inference methods for the conditional mode based on quantile regression. Specifically, we propose to estimate the conditional mode by minimizing the derivative of the estimated conditional quantile function defined by smoothing the linear quantile regression estimator, and develop two bootstrap methods, a novel pivotal bootstrap and the nonparametric bootstrap, for our conditional mode estimator. Building on high-dimensional Gaussian approximation techniques, we establish the validity of simultaneous confidence rectangles constructed from the two bootstrap methods for the conditional mode. We also extend the preceding analysis to the case where the dimension of the covariate vector is increasing with the sample size. Finally, we conduct simulation experiments and a real data analysis using the U.S. wage data to demonstrate the finite sample performance of our inference method. The supplemental materials include the wage dataset, R codes and an appendix containing proofs of the main results, additional simulation results, discussion of model misspecification and quantile crossing, and additional details of the numerical implementation.
机构:
Univ Iowa, Dept Econ, Iowa City, IA 52242 USAUniv Iowa, Dept Econ, Iowa City, IA 52242 USA
Galvao, Antonio F.
Montes-Rojas, Gabriel
论文数: 0引用数: 0
h-index: 0
机构:
CONICET Univ San Andres, Vito Dumas 284,B1644BID, Victoria, Buenos Aires, Argentina
City Univ London, Dept Econ, London EC1V 0HB, EnglandUniv Iowa, Dept Econ, Iowa City, IA 52242 USA