Bootstrap Inference for Quantile-based Modal Regression

被引:5
|
作者
Zhang, Tao [1 ]
Kato, Kengo [1 ]
Ruppert, David [1 ,2 ]
机构
[1] Cornell Univ, Dept Stat & Data Sci, Ithaca, NY 14853 USA
[2] Cornell Univ, Sch Operat Res & Informat Engn, Ithaca, NY USA
关键词
High-dimensional CLT; Kernel smoothing; Modal regression; Pivotal bootstrap; Quantile regression; MEASUREMENT ERROR; ESTIMATORS; SUPREMA; MODEL;
D O I
10.1080/01621459.2021.1918130
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we develop uniform inference methods for the conditional mode based on quantile regression. Specifically, we propose to estimate the conditional mode by minimizing the derivative of the estimated conditional quantile function defined by smoothing the linear quantile regression estimator, and develop two bootstrap methods, a novel pivotal bootstrap and the nonparametric bootstrap, for our conditional mode estimator. Building on high-dimensional Gaussian approximation techniques, we establish the validity of simultaneous confidence rectangles constructed from the two bootstrap methods for the conditional mode. We also extend the preceding analysis to the case where the dimension of the covariate vector is increasing with the sample size. Finally, we conduct simulation experiments and a real data analysis using the U.S. wage data to demonstrate the finite sample performance of our inference method. The supplemental materials include the wage dataset, R codes and an appendix containing proofs of the main results, additional simulation results, discussion of model misspecification and quantile crossing, and additional details of the numerical implementation.
引用
收藏
页码:122 / 134
页数:13
相关论文
共 50 条
  • [11] Quantile-based nonparametric inference for first-price auctions
    Marmer, Vadim
    Shneyerov, Artyom
    [J]. JOURNAL OF ECONOMETRICS, 2012, 167 (02) : 345 - 357
  • [12] Wild residual bootstrap inference for penalized quantile regression with heteroscedastic errors
    Wang, Lan
    Van Keilegom, Ingrid
    Maidman, Adam
    [J]. BIOMETRIKA, 2018, 105 (04) : 859 - 872
  • [13] Distributed Bootstrap Simultaneous Inference for High-Dimensional Quantile Regression
    Zhou, Xingcai
    Jing, Zhaoyang
    Huang, Chao
    [J]. MATHEMATICS, 2024, 12 (05)
  • [14] A Quantile-based Regression Method For Association Analyses Of Quantitative Traits
    Ghosh, Saurabh
    [J]. ANNALS OF HUMAN GENETICS, 2009, 73 : 664 - 665
  • [15] Modal Interval Regression Based on Spline Quantile Regression
    Yao, Sai
    Kitahara, Daichi
    Kuroda, Hiroki
    Hirabayshi, Akira
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2023, E106A (02) : 106 - 123
  • [16] Modal Interval Regression Based on Spline Quantile Regression
    Yao, Sai
    Kitahara, Daichi
    Kuroda, Hiroki
    Hirabayashi, Akira
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2022, E105 (08)
  • [17] Quantile-based clustering
    Hennig, Christian
    Viroli, Cinzia
    Anderlucci, Laura
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2019, 13 (02): : 4849 - 4883
  • [18] Quantile-based classifiers
    Hennig, C.
    Viroli, C.
    [J]. BIOMETRIKA, 2016, 103 (02) : 435 - 446
  • [19] Wild bootstrap for quantile regression
    Feng, Xingdong
    He, Xuming
    Hu, Jianhua
    [J]. BIOMETRIKA, 2011, 98 (04) : 995 - 999
  • [20] Letter to the Editor: 'On Quantile-based Asymmetric Family of Distributions: Properties and Inference'
    Rubio Alvarez, Francisco J.
    [J]. INTERNATIONAL STATISTICAL REVIEW, 2020, 88 (03) : 793 - 796