Wild bootstrap for quantile regression

被引:125
|
作者
Feng, Xingdong [1 ]
He, Xuming [2 ]
Hu, Jianhua [3 ]
机构
[1] Shanghai Univ Finance & Econ, Sch Stat & Management, Shanghai 200433, Peoples R China
[2] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA
[3] Univ Texas MD Anderson Canc Ctr, Dept Biostat, Houston, TX 77030 USA
基金
美国国家科学基金会;
关键词
Bahadur representation; Heteroscedastic error; Quantile regression; Wild bootstrap; LINEAR-MODELS; ESTIMATING EQUATIONS;
D O I
10.1093/biomet/asr052
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The existing theory of the wild bootstrap has focused on linear estimators. In this note, we broaden its validity by providing a class of weight distributions that is asymptotically valid for quantile regression estimators. As most weight distributions in the literature lead to biased variance estimates for nonlinear estimators of linear regression, we propose a modification of the wild bootstrap that admits a broader class of weight distributions for quantile regression. A simulation study on median regression is carried out to compare various bootstrap methods. With a simple finite-sample correction, the wild bootstrap is shown to account for general forms of heteroscedasticity in a regression model with fixed design points.
引用
收藏
页码:995 / 999
页数:5
相关论文
共 50 条
  • [1] Wild bootstrap inference for penalized quantile regression for longitudinal data
    Lamarche, Carlos
    Parker, Thomas
    [J]. JOURNAL OF ECONOMETRICS, 2023, 235 (02) : 1799 - 1826
  • [2] Wild residual bootstrap inference for penalized quantile regression with heteroscedastic errors
    Wang, Lan
    Van Keilegom, Ingrid
    Maidman, Adam
    [J]. BIOMETRIKA, 2018, 105 (04) : 859 - 872
  • [3] Bootstrap Inference for Panel Data Quantile Regression
    Galvao, Antonio F.
    Parker, Thomas
    Xiao, Zhijie
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2024, 42 (02) : 628 - 639
  • [4] Wild Bootstrap Tests for IV Regression
    Davidson, Russell
    MacKinnon, James G.
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2010, 28 (01) : 128 - 144
  • [5] Bootstrap Inference for Quantile-based Modal Regression
    Zhang, Tao
    Kato, Kengo
    Ruppert, David
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2023, 118 (541) : 122 - 134
  • [6] Bootstrap confidence bands and partial linear quantile regression
    Song, Song
    Ritov, Ya'acov
    Haerdle, Wolfgang K.
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2012, 107 : 244 - 262
  • [7] A SMOOTH BLOCK BOOTSTRAP FOR QUANTILE REGRESSION WITH TIME SERIES
    Gregory, Karl B.
    Lahiri, Soumendra N.
    Nordman, Daniel J.
    [J]. ANNALS OF STATISTICS, 2018, 46 (03): : 1138 - 1166
  • [9] Cluster-Robust Bootstrap Inference in Quantile Regression Models
    Hagemann, Andreas
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2017, 112 (517) : 446 - 456
  • [10] Bayesian bootstrap quantile regression for probabilistic photovoltaic power forecasting
    Mokhtar Bozorg
    Antonio Bracale
    Pierluigi Caramia
    Guido Carpinelli
    Mauro Carpita
    Pasquale De Falco
    [J]. Protection and Control of Modern Power Systems, 2020, 5