Bootstrap Inference for Panel Data Quantile Regression

被引:1
|
作者
Galvao, Antonio F. [1 ]
Parker, Thomas [2 ]
Xiao, Zhijie [3 ]
机构
[1] Michigan State Univ, Dept Econ, E Lansing, MI USA
[2] Univ Waterloo, Dept Econ, Waterloo, ON, Canada
[3] Boston Coll, Dept Econ, Chestnut Hill, MA USA
关键词
Bootstrap; Fixed effects; Panel data; Quantile regression; ENVIRONMENTAL KUZNETS CURVE; MOVING BLOCKS BOOTSTRAP; ECONOMIC-GROWTH; BIAS REDUCTION; MODELS; QUALITY; PART;
D O I
10.1080/07350015.2023.2210189
中图分类号
F [经济];
学科分类号
02 ;
摘要
This article develops bootstrap methods for practical statistical inference in panel data quantile regression models with fixed effects. We consider random-weighted bootstrap resampling and formally establish its validity for asymptotic inference. The bootstrap algorithm is simple to implement in practice by using a weighted quantile regression estimation for fixed effects panel data. We provide results under conditions that allow for temporal dependence of observations within individuals, thus, encompassing a large class of possible empirical applications. Monte Carlo simulations provide numerical evidence the proposed bootstrap methods have correct finite sample properties. Finally, we provide an empirical illustration using the environmental Kuznets curve.
引用
收藏
页码:628 / 639
页数:12
相关论文
共 50 条
  • [1] On Bootstrap Inference for Quantile Regression Panel Data: A Monte Carlo Study
    Galvao, Antonio F.
    Montes-Rojas, Gabriel
    [J]. ECONOMETRICS, 2015, 3 (03): : 654 - 666
  • [2] Wild bootstrap inference for penalized quantile regression for longitudinal data
    Lamarche, Carlos
    Parker, Thomas
    [J]. JOURNAL OF ECONOMETRICS, 2023, 235 (02) : 1799 - 1826
  • [3] Bootstrap Inference for Quantile-based Modal Regression
    Zhang, Tao
    Kato, Kengo
    Ruppert, David
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2023, 118 (541) : 122 - 134
  • [4] Quantile regression for panel count data based on quadratic inference functions
    Wang, Weiwei
    Wu, Xianyi
    Zhao, Xiaobing
    Zhou, Xian
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2020, 207 : 230 - 245
  • [5] Cluster-Robust Bootstrap Inference in Quantile Regression Models
    Hagemann, Andreas
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2017, 112 (517) : 446 - 456
  • [6] Smoothed quantile regression for panel data
    Galvao, Antonio F.
    Kato, Kengo
    [J]. JOURNAL OF ECONOMETRICS, 2016, 193 (01) : 92 - 112
  • [7] Distributed inference for the quantile regression model based on the random weighted bootstrap
    Xiao, Peiwen
    Liu, Xiaohui
    Li, Anna
    Pan, Guangming
    [J]. INFORMATION SCIENCES, 2024, 680
  • [8] Wild residual bootstrap inference for penalized quantile regression with heteroscedastic errors
    Wang, Lan
    Van Keilegom, Ingrid
    Maidman, Adam
    [J]. BIOMETRIKA, 2018, 105 (04) : 859 - 872
  • [9] Distributed Bootstrap Simultaneous Inference for High-Dimensional Quantile Regression
    Zhou, Xingcai
    Jing, Zhaoyang
    Huang, Chao
    [J]. MATHEMATICS, 2024, 12 (05)
  • [10] Penalized quantile regression for dynamic panel data
    Galvao, Antonio F.
    Montes-Rojas, Gabriel V.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (11) : 3476 - 3497