On Bootstrap Inference for Quantile Regression Panel Data: A Monte Carlo Study

被引:21
|
作者
Galvao, Antonio F. [1 ]
Montes-Rojas, Gabriel [2 ,3 ]
机构
[1] Univ Iowa, Dept Econ, Iowa City, IA 52242 USA
[2] CONICET Univ San Andres, Vito Dumas 284,B1644BID, Victoria, Buenos Aires, Argentina
[3] City Univ London, Dept Econ, London EC1V 0HB, England
来源
ECONOMETRICS | 2015年 / 3卷 / 03期
关键词
quantile regression; bootstrap; fixed effects;
D O I
10.3390/econometrics3030654
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper evaluates bootstrap inference methods for quantile regression panel data models. We propose to construct confidence intervals for the parameters of interest using percentile bootstrap with pairwise resampling. We study three different bootstrapping procedures. First, the bootstrap samples are constructed by resampling only from cross-sectional units with replacement. Second, the temporal resampling is performed from the time series. Finally, a more general resampling scheme, which considers sampling from both the cross-sectional and temporal dimensions, is introduced. The bootstrap algorithms are computationally attractive and easy to use in practice. We evaluate the performance of the bootstrap confidence interval by means of Monte Carlo simulations. The results show that the bootstrap methods have good finite sample performance for both location and location-scale models.
引用
收藏
页码:654 / 666
页数:13
相关论文
共 50 条
  • [1] Bootstrap Inference for Panel Data Quantile Regression
    Galvao, Antonio F.
    Parker, Thomas
    Xiao, Zhijie
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2024, 42 (02) : 628 - 639
  • [2] Wild bootstrap inference for penalized quantile regression for longitudinal data
    Lamarche, Carlos
    Parker, Thomas
    [J]. JOURNAL OF ECONOMETRICS, 2023, 235 (02) : 1799 - 1826
  • [3] TWO-STAGE QUANTILE REGRESSION FOR DYNAMIC PANEL DATA MODELS WITH FIXED EFFECTS: MONTE CARLO SIMULATION STUDY
    Abdel-Aziz, Alaa A.
    Afify, Hossameldin A.
    [J]. ADVANCES AND APPLICATIONS IN STATISTICS, 2019, 54 (01) : 21 - 30
  • [4] Bootstrap Inference for Quantile-based Modal Regression
    Zhang, Tao
    Kato, Kengo
    Ruppert, David
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2023, 118 (541) : 122 - 134
  • [5] The bootstrap method for Monte Carlo integration inference
    Al Luhayb, Asamh Saleh M.
    [J]. JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2023, 35 (06)
  • [6] Quantile regression for panel count data based on quadratic inference functions
    Wang, Weiwei
    Wu, Xianyi
    Zhao, Xiaobing
    Zhou, Xian
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2020, 207 : 230 - 245
  • [7] Cluster-Robust Bootstrap Inference in Quantile Regression Models
    Hagemann, Andreas
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2017, 112 (517) : 446 - 456
  • [8] Smoothed quantile regression for panel data
    Galvao, Antonio F.
    Kato, Kengo
    [J]. JOURNAL OF ECONOMETRICS, 2016, 193 (01) : 92 - 112
  • [9] Distributed inference for the quantile regression model based on the random weighted bootstrap
    Xiao, Peiwen
    Liu, Xiaohui
    Li, Anna
    Pan, Guangming
    [J]. INFORMATION SCIENCES, 2024, 680
  • [10] Wild residual bootstrap inference for penalized quantile regression with heteroscedastic errors
    Wang, Lan
    Van Keilegom, Ingrid
    Maidman, Adam
    [J]. BIOMETRIKA, 2018, 105 (04) : 859 - 872