Bayesian analysis of penalized quantile regression for longitudinal data

被引:1
|
作者
A. Aghamohammadi
S. Mohammadi
机构
[1] University of Zanjan,Department of Statistics
来源
Statistical Papers | 2017年 / 58卷
关键词
Asymmetric Laplace distribution; Bayesian quantile regression; Hierarchical models; Longitudinal data; Penalty methods; Random effects; 62J99; 62F15;
D O I
暂无
中图分类号
学科分类号
摘要
This paper considers penalized quantile regression model for random effects longitudinal data from a Bayesian perspective. The introduction of a large number of individual random effects can significantly inflate the variability of estimates of other covariate effects. To modify this inflation effect a hierarchical Bayesian model is introduced to shrink the individual effects toward the common population values by using the Lasso and adaptive Lasso penalties in the quantile regression check function. A Gibbs sampling algorithm is developed to simulate the parameters from the posterior distributions. The simulation studies and real data analysis indicate that the proposed methods generally perform better in comparison to the other approaches.
引用
收藏
页码:1035 / 1053
页数:18
相关论文
共 50 条
  • [1] Bayesian analysis of penalized quantile regression for longitudinal data
    Aghamohammadi, A.
    Mohammadi, S.
    [J]. STATISTICAL PAPERS, 2017, 58 (04) : 1035 - 1053
  • [2] Bayesian analysis of dynamic panel data by penalized quantile regression
    Ali Aghamohammadi
    [J]. Statistical Methods & Applications, 2018, 27 : 91 - 108
  • [3] Bayesian analysis of dynamic panel data by penalized quantile regression
    Aghamohammadi, Ali
    [J]. STATISTICAL METHODS AND APPLICATIONS, 2018, 27 (01): : 91 - 108
  • [4] Bayesian quantile regression for longitudinal data models
    Luo, Youxi
    Lian, Heng
    Tian, Maozai
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2012, 82 (11) : 1635 - 1649
  • [5] Bayesian quantile regression for ordinal longitudinal data
    Alhamzawi, Rahim
    Ali, Haithem Taha Mohammad
    [J]. JOURNAL OF APPLIED STATISTICS, 2018, 45 (05) : 815 - 828
  • [6] Bayesian quantile regression for longitudinal count data
    Jantre, Sanket
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (01) : 103 - 127
  • [7] Wild bootstrap inference for penalized quantile regression for longitudinal data
    Lamarche, Carlos
    Parker, Thomas
    [J]. JOURNAL OF ECONOMETRICS, 2023, 235 (02) : 1799 - 1826
  • [8] Bayesian bridge-randomized penalized quantile regression
    Tian, Yuzhu
    Song, Xinyuan
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2020, 144
  • [9] Penalized weighted smoothed quantile regression for high-dimensional longitudinal data
    Song, Yanan
    Han, Haohui
    Fu, Liya
    Wang, Ting
    [J]. STATISTICS IN MEDICINE, 2024, 43 (10) : 2007 - 2042
  • [10] Bayesian Quantile Regression for Big Data Analysis
    Chu, Yuanqi
    Hu, Xueping
    Yu, Keming
    [J]. NEW FRONTIERS IN BAYESIAN STATISTICS, BAYSM 2021, 2022, 405 : 11 - 22