Bayesian quantile regression for longitudinal count data

被引:1
|
作者
Jantre, Sanket [1 ]
机构
[1] Michigan State Univ, Dept Stat & Probabil, E Lansing, MI 48824 USA
关键词
Asymmetric Laplace; Gibbs sampling; longitudinal count data; Markov chain Monte Carlo; Poisson process; quantile regression; FINITE SMOOTHING ALGORITHM; PRIOR DISTRIBUTIONS; MEDIAN REGRESSION; SELECTION; MODELS; INFERENCE;
D O I
10.1080/00949655.2022.2096025
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This work introduces Bayesian quantile regression modelling framework for the analysis of longitudinal count data. In this model, the response variable is not continuous and hence an artificial smoothing of counts is incorporated. The Bayesian implementation utilizes the normal-exponential mixture representation of the asymmetric Laplace distribution for the response variable. An efficient Gibbs sampling algorithm is derived for fitting the model to the data. The model is illustrated through simulation studies and implemented in an application drawn from neurology. Model comparison demonstrates the practical utility of the proposed model.
引用
收藏
页码:103 / 127
页数:25
相关论文
共 50 条
  • [1] Bayesian quantile regression for longitudinal data models
    Luo, Youxi
    Lian, Heng
    Tian, Maozai
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2012, 82 (11) : 1635 - 1649
  • [2] Bayesian quantile regression for ordinal longitudinal data
    Alhamzawi, Rahim
    Ali, Haithem Taha Mohammad
    [J]. JOURNAL OF APPLIED STATISTICS, 2018, 45 (05) : 815 - 828
  • [3] Bayesian quantile regression model for claim count data
    Fuzi, Mohd Fadzli Mohd
    Jemain, Abdul Aziz
    Ismail, Noriszura
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2016, 66 : 124 - 137
  • [4] Bayesian analysis of penalized quantile regression for longitudinal data
    Aghamohammadi, A.
    Mohammadi, S.
    [J]. STATISTICAL PAPERS, 2017, 58 (04) : 1035 - 1053
  • [5] Bayesian analysis of penalized quantile regression for longitudinal data
    A. Aghamohammadi
    S. Mohammadi
    [J]. Statistical Papers, 2017, 58 : 1035 - 1053
  • [6] Bayesian quantile regression for count data with application to environmental epidemiology
    Lee, Duncan
    Neocleous, Tereza
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2010, 59 : 905 - 920
  • [7] Bayesian Quantile Regression for Longitudinal Studies with Nonignorable Missing Data
    Yuan, Ying
    Yin, Guosheng
    [J]. BIOMETRICS, 2010, 66 (01) : 105 - 114
  • [8] Bayesian Nonlinear Quantile Regression Approach for Longitudinal Ordinal Data
    Hang Yang
    Zhuojian Chen
    Weiping Zhang
    [J]. Communications in Mathematics and Statistics, 2019, 7 : 123 - 140
  • [9] Bayesian Nonlinear Quantile Regression Approach for Longitudinal Ordinal Data
    Yang, Hang
    Chen, Zhuojian
    Zhang, Weiping
    [J]. COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2019, 7 (02) : 123 - 140
  • [10] Quantile regression for longitudinal data
    Koenker, R
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2004, 91 (01) : 74 - 89