Quantile regression for longitudinal data

被引:1464
|
作者
Koenker, R [1 ]
机构
[1] Univ Illinois, Dept Econ, Champaign, IL 61820 USA
基金
美国国家科学基金会;
关键词
quantile regression; penalty methods; shrinkage; L-statistics; random effects; robust estimation; hierarchical models;
D O I
10.1016/j.jmva.2004.05.006
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The penalized least squares interpretation of the classical random effects estimator suggests a possible way forward for quantile regression models with a large number of "fixed effects". The introduction of a large number of individual fixed effects can significantly inflate the variability of estimates of other covariate effects. Regularization, or shrinkage of these individual effects toward a common value can help to modify this inflation effect. A general approach to estimating quantile regression models for longitudinal data is proposed employing l(1) regularization methods. Sparse linear algebra and interior point methods for solving large linear programs are essential computational tools. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:74 / 89
页数:16
相关论文
共 50 条
  • [1] Weighted quantile regression for longitudinal data
    Lu, Xiaoming
    Fan, Zhaozhi
    [J]. COMPUTATIONAL STATISTICS, 2015, 30 (02) : 569 - 592
  • [2] Weighted quantile regression for longitudinal data
    Xiaoming Lu
    Zhaozhi Fan
    [J]. Computational Statistics, 2015, 30 : 569 - 592
  • [3] Nonlinear quantile regression estimation of longitudinal data
    Karlsson, Andreas
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2008, 37 (01) : 114 - 131
  • [4] Heterogeneous quantile regression for longitudinal data with structures
    Hou, Zhaohan
    Wang, Lei
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2024, 194
  • [5] Bayesian quantile regression for ordinal longitudinal data
    Alhamzawi, Rahim
    Ali, Haithem Taha Mohammad
    [J]. JOURNAL OF APPLIED STATISTICS, 2018, 45 (05) : 815 - 828
  • [6] Distributed quantile regression for longitudinal big data
    Fan, Ye
    Lin, Nan
    Yu, Liqun
    [J]. COMPUTATIONAL STATISTICS, 2024, 39 (02) : 751 - 779
  • [7] Bayesian quantile regression for longitudinal data models
    Luo, Youxi
    Lian, Heng
    Tian, Maozai
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2012, 82 (11) : 1635 - 1649
  • [8] Bayesian quantile regression for longitudinal count data
    Jantre, Sanket
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (01) : 103 - 127
  • [9] Distributed quantile regression for longitudinal big data
    Ye Fan
    Nan Lin
    Liqun Yu
    [J]. Computational Statistics, 2024, 39 : 751 - 779
  • [10] Efficient quantile marginal regression for longitudinal data with dropouts
    Cho, Hyunkeun
    Hong, Hyokyoung Grace
    Kim, Mi-Ok
    [J]. BIOSTATISTICS, 2016, 17 (03) : 561 - 575