Heterogeneous quantile regression for longitudinal data with structures

被引:0
|
作者
Hou, Zhaohan [1 ,2 ]
Wang, Lei [1 ,2 ,3 ]
机构
[1] Nankai Univ, Sch Stat & Data Sci, KLMDASR, LEBPS, Tianjin, Peoples R China
[2] Nankai Univ, LPMC, Tianjin, Peoples R China
[3] Nankai Univ, Sch Stat & Data Sci, Tianjin, Peoples R China
基金
中国国家自然科学基金;
关键词
Heterogeneous model; Kernel smoothing; Multi-directional penalty; Subgroup analysis; VARIABLE SELECTION; EMPIRICAL LIKELIHOOD; SHRINKAGE; NUMBER;
D O I
10.1016/j.csda.2024.107928
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Subgroup analysis for modeling longitudinal data with heterogeneity across all individuals has drawn attention in the modern statistical learning. In this paper, we focus on heterogeneous quantile regression model and propose to achieve variable selection, heterogeneous subgrouping and parameter estimation simultaneously, by using the smoothed generalized estimating equations in conjunction with the multi-directional separation penalty. The proposed method allows individuals to be divided into multiple subgroups for different heterogeneous covariates such that estimation efficiency can be gained through incorporating individual correlation structure and sharing information within subgroups. A data -driven procedure based on a modified BIC is applied to estimate the number of subgroups. Theoretical properties of the oracle estimator given the underlying true subpopulation information are firstly provided and then it is shown that the proposed estimator is equivalent to the oracle estimator under some conditions. The finitesample performance of the proposed estimators is studied through simulations and an application to an AIDS dataset is also presented.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Quantile regression for longitudinal data
    Koenker, R
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2004, 91 (01) : 74 - 89
  • [2] Weighted quantile regression for longitudinal data
    Lu, Xiaoming
    Fan, Zhaozhi
    [J]. COMPUTATIONAL STATISTICS, 2015, 30 (02) : 569 - 592
  • [3] Weighted quantile regression for longitudinal data
    Xiaoming Lu
    Zhaozhi Fan
    [J]. Computational Statistics, 2015, 30 : 569 - 592
  • [4] Distributed quantile regression for massive heterogeneous data
    Hu, Aijun
    Jiao, Yuling
    Liu, Yanyan
    Shi, Yueyong
    Wu, Yuanshan
    [J]. NEUROCOMPUTING, 2021, 448 : 249 - 262
  • [5] Nonlinear quantile regression estimation of longitudinal data
    Karlsson, Andreas
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2008, 37 (01) : 114 - 131
  • [6] Bayesian quantile regression for ordinal longitudinal data
    Alhamzawi, Rahim
    Ali, Haithem Taha Mohammad
    [J]. JOURNAL OF APPLIED STATISTICS, 2018, 45 (05) : 815 - 828
  • [7] Bayesian quantile regression for longitudinal data models
    Luo, Youxi
    Lian, Heng
    Tian, Maozai
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2012, 82 (11) : 1635 - 1649
  • [8] Distributed quantile regression for longitudinal big data
    Fan, Ye
    Lin, Nan
    Yu, Liqun
    [J]. COMPUTATIONAL STATISTICS, 2024, 39 (02) : 751 - 779
  • [9] Bayesian quantile regression for longitudinal count data
    Jantre, Sanket
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (01) : 103 - 127
  • [10] Distributed quantile regression for longitudinal big data
    Ye Fan
    Nan Lin
    Liqun Yu
    [J]. Computational Statistics, 2024, 39 : 751 - 779