Wild bootstrap inference for penalized quantile regression for longitudinal data

被引:1
|
作者
Lamarche, Carlos [1 ]
Parker, Thomas [2 ]
机构
[1] Univ Kentucky, Dept Econ, 223G Gatton Coll Business & Econ, Lexington, KY 40506 USA
[2] Univ Waterloo, Dept Econ, 200 Univ Ave West, Waterloo, ON N2L 3G1, Canada
关键词
Quantile regression; Panel data; Penalized estimator; Bootstrap inference; PANEL-DATA MODELS; ORACLE INEQUALITIES; VARIABLE SELECTION; UNIFORM INFERENCE; BIAS REDUCTION; ASYMPTOTICS;
D O I
10.1016/j.jeconom.2022.11.011
中图分类号
F [经济];
学科分类号
02 ;
摘要
The existing theory of penalized quantile regression for longitudinal data has focused primarily on point estimation. In this work, we investigate statistical inference. We propose a wild residual bootstrap procedure and show that it is asymptotically valid for approximating the distribution of the penalized estimator. The model puts no restrictions on individual effects, and the estimator achieves consistency by letting the shrinkage decay in importance asymptotically. The new method is easy to implement and simulation studies show that it has accurate small sample behavior in comparison with existing procedures. Finally, we illustrate the new approach using U.S. Census data to estimate a model that includes more than eighty thousand parameters.& COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页码:1799 / 1826
页数:28
相关论文
共 50 条
  • [21] Distributed inference for the quantile regression model based on the random weighted bootstrap
    Xiao, Peiwen
    Liu, Xiaohui
    Li, Anna
    Pan, Guangming
    [J]. INFORMATION SCIENCES, 2024, 680
  • [22] Group penalized quantile regression
    Ouhourane, Mohamed
    Yang, Yi
    Benedet, Andrea L.
    Oualkacha, Karim
    [J]. STATISTICAL METHODS AND APPLICATIONS, 2022, 31 (03): : 495 - 529
  • [23] Group penalized quantile regression
    Mohamed Ouhourane
    Yi Yang
    Andréa L. Benedet
    Karim Oualkacha
    [J]. Statistical Methods & Applications, 2022, 31 : 495 - 529
  • [24] Distributed Bootstrap Simultaneous Inference for High-Dimensional Quantile Regression
    Zhou, Xingcai
    Jing, Zhaoyang
    Huang, Chao
    [J]. MATHEMATICS, 2024, 12 (05)
  • [25] INFERENCE FOR CENSORED QUANTILE REGRESSION MODELS IN LONGITUDINAL STUDIES
    Wang, Huixia Judy
    Fygenson, Mendel
    [J]. ANNALS OF STATISTICS, 2009, 37 (02): : 756 - 781
  • [26] Bootstrap methods for bias correction and confidence interval estimation for nonlinear quantile regression of longitudinal data
    Karlsson, Andreas
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2009, 79 (10) : 1205 - 1218
  • [27] Weighted quantile regression for longitudinal data
    Lu, Xiaoming
    Fan, Zhaozhi
    [J]. COMPUTATIONAL STATISTICS, 2015, 30 (02) : 569 - 592
  • [28] Weighted quantile regression for longitudinal data
    Xiaoming Lu
    Zhaozhi Fan
    [J]. Computational Statistics, 2015, 30 : 569 - 592
  • [29] Penalized quantile regression for spatial panel data with fixed effects
    Zhang, Yuanqing
    Jiang, Jiayuan
    Feng, Yaqin
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (04) : 1287 - 1299
  • [30] Bayesian analysis of dynamic panel data by penalized quantile regression
    Ali Aghamohammadi
    [J]. Statistical Methods & Applications, 2018, 27 : 91 - 108