Group penalized quantile regression

被引:0
|
作者
Mohamed Ouhourane
Yi Yang
Andréa L. Benedet
Karim Oualkacha
机构
[1] Université du Québec à Montréal,Department of Mathematics
[2] McGill University,Department of Mathematics and Statistics
[3] McGill University Research Centre for Studies in Aging,Translational Neuroimaging Laboratory
来源
关键词
Coordinate descent algorithm; Group penalized regression; Heterogeneous; Pseudo-quantile; Variable selection; Quantile regression;
D O I
暂无
中图分类号
学科分类号
摘要
Quantile regression models have become a widely used statistical tool in genetics and in the omics fields because they can provide a rich description of the predictors’ effects on an outcome without imposing stringent parametric assumptions on the outcome-predictors relationship. This work considers the problem of selecting grouped variables in high-dimensional linear quantile regression models. We introduce a group penalized pseudo quantile regression (GPQR) framework with both group-lasso and group non-convex penalties. We approximate the quantile regression check function using a pseudo-quantile check function. Then, using the majorization–minimization principle, we derive a simple and computationally efficient group-wise descent algorithm to solve group penalized quantile regression. We establish the convergence rate property of our algorithm with the group-Lasso penalty and illustrate the GPQR approach performance using simulations in high-dimensional settings. Furthermore, we demonstrate the use of the GPQR method in a gene-based association analysis of data from the Alzheimer’s Disease Neuroimaging Initiative study and in an epigenetic analysis of DNA methylation data.
引用
收藏
页码:495 / 529
页数:34
相关论文
共 50 条
  • [1] Group penalized quantile regression
    Ouhourane, Mohamed
    Yang, Yi
    Benedet, Andrea L.
    Oualkacha, Karim
    [J]. STATISTICAL METHODS AND APPLICATIONS, 2022, 31 (03): : 495 - 529
  • [2] Penalized expectile regression: an alternative to penalized quantile regression
    Lina Liao
    Cheolwoo Park
    Hosik Choi
    [J]. Annals of the Institute of Statistical Mathematics, 2019, 71 : 409 - 438
  • [3] Penalized expectile regression: an alternative to penalized quantile regression
    Liao, Lina
    Park, Cheolwoo
    Choi, Hosik
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2019, 71 (02) : 409 - 438
  • [4] Hierarchically penalized quantile regression
    Kang, Jongkyeong
    Bang, Sungwan
    Jhun, Myoungshic
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2016, 86 (02) : 340 - 356
  • [5] Penalized quantile regression tree
    Kim, Jaeoh
    Cho, HyungJun
    Bang, Sungwan
    [J]. KOREAN JOURNAL OF APPLIED STATISTICS, 2016, 29 (07) : 1361 - 1371
  • [6] Advanced algorithms for penalized quantile and composite quantile regression
    Matthew Pietrosanu
    Jueyu Gao
    Linglong Kong
    Bei Jiang
    Di Niu
    [J]. Computational Statistics, 2021, 36 : 333 - 346
  • [7] Advanced algorithms for penalized quantile and composite quantile regression
    Pietrosanu, Matthew
    Gao, Jueyu
    Kong, Linglong
    Jiang, Bei
    Niu, Di
    [J]. COMPUTATIONAL STATISTICS, 2021, 36 (01) : 333 - 346
  • [8] Hierarchically penalized quantile regression with multiple responses
    Jongkyeong Kang
    Seung Jun Shin
    Jaeshin Park
    Sungwan Bang
    [J]. Journal of the Korean Statistical Society, 2018, 47 : 471 - 481
  • [9] Penalized quantile regression for dynamic panel data
    Galvao, Antonio F.
    Montes-Rojas, Gabriel V.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (11) : 3476 - 3497
  • [10] Hierarchically penalized quantile regression with multiple responses
    Kang, Jongkyeong
    Shin, Seung Jun
    Park, Jaeshin
    Bang, Sungwan
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2018, 47 (04) : 471 - 481