Penalized expectile regression: an alternative to penalized quantile regression

被引:30
|
作者
Liao, Lina [1 ]
Park, Cheolwoo [1 ]
Choi, Hosik [2 ]
机构
[1] Univ Georgia, Dept Stat, Athens, GA 30602 USA
[2] Kyonggi Univ, Dept Appl Stat, Suwon 16227, Kyonggi Do, South Korea
基金
新加坡国家研究基金会;
关键词
Asymptotics; Expectile regression; Heteroscedasticity; Penalized regression; Variable selection; CONFIDENCE-INTERVALS; VARIABLE SELECTION; ABSOLUTE DEVIATION; LASSO; ASYMPTOTICS; LIKELIHOOD; INFERENCE;
D O I
10.1007/s10463-018-0645-1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper concerns the study of the entire conditional distribution of a response given predictors in a heterogeneous regression setting. A common approach to address heterogeneous data is quantile regression, which utilizes the minimization of the L1 norm. As an alternative to quantile regression, we consider expectile regression, which relies on the minimization of the asymmetric L2 norm and detects heteroscedasticity effectively. We assume that only a small set of predictors is relevant to the response and develop penalized expectile regression with SCAD and adaptive LASSO penalties. With properly chosen tuning parameters, we show that the proposed estimators display oracle properties. A numerical study using simulated and real examples demonstrates the competitive performance of the proposed penalized expectile regression, and its combined use with penalized quantile regression would be helpful and recommended for practitioners.
引用
收藏
页码:409 / 438
页数:30
相关论文
共 50 条
  • [1] Penalized expectile regression: an alternative to penalized quantile regression
    Lina Liao
    Cheolwoo Park
    Hosik Choi
    [J]. Annals of the Institute of Statistical Mathematics, 2019, 71 : 409 - 438
  • [2] Hierarchically penalized quantile regression
    Kang, Jongkyeong
    Bang, Sungwan
    Jhun, Myoungshic
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2016, 86 (02) : 340 - 356
  • [3] Group penalized quantile regression
    Ouhourane, Mohamed
    Yang, Yi
    Benedet, Andrea L.
    Oualkacha, Karim
    [J]. STATISTICAL METHODS AND APPLICATIONS, 2022, 31 (03): : 495 - 529
  • [4] Group penalized quantile regression
    Mohamed Ouhourane
    Yi Yang
    Andréa L. Benedet
    Karim Oualkacha
    [J]. Statistical Methods & Applications, 2022, 31 : 495 - 529
  • [5] Penalized quantile regression tree
    Kim, Jaeoh
    Cho, HyungJun
    Bang, Sungwan
    [J]. KOREAN JOURNAL OF APPLIED STATISTICS, 2016, 29 (07) : 1361 - 1371
  • [6] An elastic-net penalized expectile regression with applications
    Xu, Q. F.
    Ding, X. H.
    Jiang, C. X.
    Yu, K. M.
    Shi, L.
    [J]. JOURNAL OF APPLIED STATISTICS, 2021, 48 (12) : 2205 - 2230
  • [7] Advanced algorithms for penalized quantile and composite quantile regression
    Matthew Pietrosanu
    Jueyu Gao
    Linglong Kong
    Bei Jiang
    Di Niu
    [J]. Computational Statistics, 2021, 36 : 333 - 346
  • [8] Advanced algorithms for penalized quantile and composite quantile regression
    Pietrosanu, Matthew
    Gao, Jueyu
    Kong, Linglong
    Jiang, Bei
    Niu, Di
    [J]. COMPUTATIONAL STATISTICS, 2021, 36 (01) : 333 - 346
  • [9] Penalized quantile regression for dynamic panel data
    Galvao, Antonio F.
    Montes-Rojas, Gabriel V.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (11) : 3476 - 3497
  • [10] Hierarchically penalized quantile regression with multiple responses
    Jongkyeong Kang
    Seung Jun Shin
    Jaeshin Park
    Sungwan Bang
    [J]. Journal of the Korean Statistical Society, 2018, 47 : 471 - 481