autocorrelated errors;
bias reduction;
dependent errors;
median regression;
panel data;
repeated measurements;
MEDIAN REGRESSION;
D O I:
10.1080/00949650802221180
中图分类号:
TP39 [计算机的应用];
学科分类号:
081203 ;
0835 ;
摘要:
This paper examines the use of bootstrapping for bias correction and calculation of confidence intervals (CIs) for a weighted nonlinear quantile regression estimator adjusted to the case of longitudinal data. Different weights and types of CIs are used and compared by computer simulation using a logistic growth function and error terms following an AR(1) model. The results indicate that bias correction reduces the bias of a point estimator but fails for CI calculations. A bootstrap percentile method and a normal approximation method perform well for two weights when used without bias correction. Taking both coverage and lengths of CIs into consideration, a non-bias-corrected percentile method with an unweighted estimator performs best.
机构:
Korea Inst Radiol & Med Sci, Lab Radiat Hlth Assessment, Seoul, South Korea
Korea Univ, Grad Sch, Dept Publ Hlth, Seoul, South KoreaKorea Inst Radiol & Med Sci, Lab Radiat Hlth Assessment, Seoul, South Korea
Jeong, Haesu
Kim, Young Min
论文数: 0引用数: 0
h-index: 0
机构:
Kyungpook Natl Univ, Dept Stat, Daegu, South KoreaKorea Inst Radiol & Med Sci, Lab Radiat Hlth Assessment, Seoul, South Korea
Kim, Young Min
Bang, Ye Jin
论文数: 0引用数: 0
h-index: 0
机构:
Korea Univ, Coll Med, Dept Prevent Med, Seoul, South KoreaKorea Inst Radiol & Med Sci, Lab Radiat Hlth Assessment, Seoul, South Korea
Bang, Ye Jin
Seo, Songwon
论文数: 0引用数: 0
h-index: 0
机构:
Korea Inst Radiol & Med Sci, Lab Radiat Hlth Assessment, Seoul, South KoreaKorea Inst Radiol & Med Sci, Lab Radiat Hlth Assessment, Seoul, South Korea
Seo, Songwon
Lee, Won Jin
论文数: 0引用数: 0
h-index: 0
机构:
Korea Univ, Coll Med, Dept Prevent Med, Seoul, South KoreaKorea Inst Radiol & Med Sci, Lab Radiat Hlth Assessment, Seoul, South Korea