Bootstrap methods for bias correction and confidence interval estimation for nonlinear quantile regression of longitudinal data

被引:16
|
作者
Karlsson, Andreas [1 ]
机构
[1] Uppsala Univ, Cent Hosp, Ctr Clin Res Vasteras, Vasteras, Sweden
关键词
autocorrelated errors; bias reduction; dependent errors; median regression; panel data; repeated measurements; MEDIAN REGRESSION;
D O I
10.1080/00949650802221180
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper examines the use of bootstrapping for bias correction and calculation of confidence intervals (CIs) for a weighted nonlinear quantile regression estimator adjusted to the case of longitudinal data. Different weights and types of CIs are used and compared by computer simulation using a logistic growth function and error terms following an AR(1) model. The results indicate that bias correction reduces the bias of a point estimator but fails for CI calculations. A bootstrap percentile method and a normal approximation method perform well for two weights when used without bias correction. Taking both coverage and lengths of CIs into consideration, a non-bias-corrected percentile method with an unweighted estimator performs best.
引用
收藏
页码:1205 / 1218
页数:14
相关论文
共 50 条
  • [31] Weighted quantile regression for longitudinal data
    Lu, Xiaoming
    Fan, Zhaozhi
    COMPUTATIONAL STATISTICS, 2015, 30 (02) : 569 - 592
  • [32] Weighted quantile regression for longitudinal data
    Xiaoming Lu
    Zhaozhi Fan
    Computational Statistics, 2015, 30 : 569 - 592
  • [33] Estimation of Quantile Confidence Intervals for Queueing Systems Based on the Bootstrap Methodology
    Romero-Silva, Rodrigo
    Hurtado, Margarita
    APPLIED COMPUTER SCIENCES IN ENGINEERING, 2017, 742 : 275 - 286
  • [34] ON COMPARISON OF ESTIMATION METHODS IN QUANTILE REGRESSION
    Woo, Song Jea
    Kang, Kee-Hoon
    ADVANCES AND APPLICATIONS IN STATISTICS, 2018, 52 (03) : 203 - 213
  • [35] M-estimation in nonlinear regression for longitudinal data
    Orsakova, Martina
    KYBERNETIKA, 2007, 43 (01) : 61 - 74
  • [36] Quantile Regression of Interval-Valued Data
    Fagundes, Roberta A. A.
    de Souza, Renata M. C. R.
    Soares, Yanne M. G.
    2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 2586 - 2591
  • [37] Efficient parameter estimation via Gaussian copulas for quantile regression with longitudinal data
    Fu, Liya
    Wang, You-Gan
    JOURNAL OF MULTIVARIATE ANALYSIS, 2016, 143 : 492 - 502
  • [38] Nonparametric Bootstrap Estimation of Confidence Interval in Base Station Test
    Ma, Dalin
    Gao, Yougang
    Shi, Dan
    Shen, Yuanmao
    Zhou, Yaozhong
    Yang, Qinghai
    CEEM: 2009 5TH ASIA-PACIFIC CONFERENCE ON ENVIRONMENTAL ELECTROMAGNETICS, 2009, : 390 - +
  • [39] Wild Bootstrap-Based Bias Correction for Spatial Quantile Panel Data Models with Varying Coefficients
    Dai, Xiaowen
    Huang, Shidan
    Jin, Libin
    Tian, Maozai
    MATHEMATICS, 2023, 11 (09)
  • [40] Wind power probability interval prediction based on Bootstrap quantile regression method
    Yang Xiyun
    Ma Xue
    Fu Guo
    Zhang Huang
    Zhang Jianhua
    2017 CHINESE AUTOMATION CONGRESS (CAC), 2017, : 1505 - 1509