Quantile Regression of Interval-Valued Data

被引:0
|
作者
Fagundes, Roberta A. A. [1 ]
de Souza, Renata M. C. R. [2 ]
Soares, Yanne M. G. [1 ]
机构
[1] Univ Pernambuco, Dept Engn Comp, Recife, PE, Brazil
[2] Univ Fed Pernambuco, Ctr Informat, Recife, PE, Brazil
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Linear regression is a standard statistical method widely used for prediction. It focuses on modeling the mean the target variable without accounting for all the distributional properties of this variable. In contrast, the quantile regression model facilitates the analysis of the full distributional properties, it allows to model different quantities of the target variable. This paper proposes a quantile regression model for interval data. In this model, each interval variable of the input data is represented by its range and center and a smooth function between two vectors composed by interval variables are defined. In order to test the usefulness of the proposed model, a simulation study is undertaken and an application using a scientific production interval data set of institutions from Brazil is performed. The quality of the interval prediction obtained by the proposed model is assessed by mean magnitude of relative error calculated from test data.
引用
收藏
页码:2586 / 2591
页数:6
相关论文
共 50 条
  • [1] Asymmetric Effect with Quantile Regression for Interval-Valued Variables
    Teetranont, Teerawut
    Yamaka, Woraphon
    Sriboonchitta, Songsak
    PREDICTIVE ECONOMETRICS AND BIG DATA, 2018, 753 : 613 - 628
  • [2] Regression analysis for interval-valued data
    Billard, L
    Diday, E
    DATA ANALYSIS, CLASSIFICATION, AND RELATED METHODS, 2000, : 369 - 374
  • [3] Linear regression with interval-valued data
    Sun, Yan
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2016, 8 (01): : 54 - 60
  • [4] Constrained Regression for Interval-Valued Data
    Gonzalez-Rivera, Gloria
    Lin, Wei
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2013, 31 (04) : 473 - 490
  • [5] Resistant Regression for Interval-Valued Data
    Renan, Jobson
    Silva, Jornandes Dias
    Galdino, Sergio
    2013 1ST BRICS COUNTRIES CONGRESS ON COMPUTATIONAL INTELLIGENCE AND 11TH BRAZILIAN CONGRESS ON COMPUTATIONAL INTELLIGENCE (BRICS-CCI & CBIC), 2013, : 277 - 281
  • [6] Compositional Linear Regression on Interval-valued Data
    Pekaslan, Direnc
    Wagner, Christian
    2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021), 2021,
  • [7] Nonlinear regression applied to interval-valued data
    Eufrásio de A. Lima Neto
    Francisco de A. T. de Carvalho
    Pattern Analysis and Applications, 2017, 20 : 809 - 824
  • [8] Nonlinear regression applied to interval-valued data
    Lima Neto, Eufrasio de A.
    de Carvalho, Francisco de A. T.
    PATTERN ANALYSIS AND APPLICATIONS, 2017, 20 (03) : 809 - 824
  • [9] Multiple Linear Regression Models on Interval-valued Dengue Data with Interval-valued Climatic Variables
    Attanayake, A. M. C. H.
    Perera, S. S. N.
    Liyanage, U. P.
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2020, 59 (03): : 49 - 60
  • [10] Linear regression analysis for interval-valued functional data
    Nasirzadeh, Roya
    Nasirzadeh, Fariba
    Mohammadi, Zohreh
    STAT, 2021, 10 (01):