Nonlinear regression applied to interval-valued data

被引:29
|
作者
Lima Neto, Eufrasio de A. [1 ]
de Carvalho, Francisco de A. T. [2 ]
机构
[1] Univ Fed Paraiba, Dept Estat, BR-58051900 Joao Pessoa, PB, Brazil
[2] Univ Fed Pernambuco, Ctr Informat, Av Prof Luiz Freire S-N, BR-50740540 Recife, PE, Brazil
关键词
Nonlinear regression; Interval-valued data; Monte Carlo; Cross-validation; LINEAR-MODEL;
D O I
10.1007/s10044-016-0538-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces a nonlinear regression model to interval-valued data. The method extends the classical nonlinear regression model in order to manage interval-valued datasets. The parameter estimates of the nonlinear model considers some optimization algorithms aiming to identify which one presents the best accuracy and precision in the prediction task. A detailed prediction performance study comparing the proposed nonlinear method and other linear regression methods for interval variables is presented based on K-fold cross-validation scheme with synthetic interval-valued datasets generated on a Monte Carlo framework. Moreover, two suitable real interval-valued datasets are considered to illustrate the usefulness and the performance of the approaches presented in this paper. The results suggested that the use of the nonlinear method is suitable for real datasets, as well as in the Monte Carlo simulation study.
引用
收藏
页码:809 / 824
页数:16
相关论文
共 50 条
  • [1] Nonlinear regression applied to interval-valued data
    Eufrásio de A. Lima Neto
    Francisco de A. T. de Carvalho
    [J]. Pattern Analysis and Applications, 2017, 20 : 809 - 824
  • [2] A clusterwise nonlinear regression algorithm for interval-valued data
    de Carvalho, Francisco de A. T.
    Lima Neto, Eufrasio de A.
    da Silva, Kassio C. F.
    [J]. INFORMATION SCIENCES, 2021, 555 : 357 - 385
  • [3] Panel Interval-Valued Data Nonlinear Regression Models and Applications
    Ji, Ai-bing
    Li, Qing-qing
    Zhang, Jin-jin
    [J]. COMPUTATIONAL ECONOMICS, 2023,
  • [4] Regression analysis for interval-valued data
    Billard, L
    Diday, E
    [J]. DATA ANALYSIS, CLASSIFICATION, AND RELATED METHODS, 2000, : 369 - 374
  • [5] Linear regression with interval-valued data
    Sun, Yan
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2016, 8 (01): : 54 - 60
  • [6] Constrained Regression for Interval-Valued Data
    Gonzalez-Rivera, Gloria
    Lin, Wei
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2013, 31 (04) : 473 - 490
  • [7] Resistant Regression for Interval-Valued Data
    Renan, Jobson
    Silva, Jornandes Dias
    Galdino, Sergio
    [J]. 2013 1ST BRICS COUNTRIES CONGRESS ON COMPUTATIONAL INTELLIGENCE AND 11TH BRAZILIAN CONGRESS ON COMPUTATIONAL INTELLIGENCE (BRICS-CCI & CBIC), 2013, : 277 - 281
  • [8] Quantile Regression of Interval-Valued Data
    Fagundes, Roberta A. A.
    de Souza, Renata M. C. R.
    Soares, Yanne M. G.
    [J]. 2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 2586 - 2591
  • [9] Compositional Linear Regression on Interval-valued Data
    Pekaslan, Direnc
    Wagner, Christian
    [J]. 2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021), 2021,
  • [10] Multiple Linear Regression Models on Interval-valued Dengue Data with Interval-valued Climatic Variables
    Attanayake, A. M. C. H.
    Perera, S. S. N.
    Liyanage, U. P.
    [J]. INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2020, 59 (03): : 49 - 60