Nonlinear regression applied to interval-valued data

被引:29
|
作者
Lima Neto, Eufrasio de A. [1 ]
de Carvalho, Francisco de A. T. [2 ]
机构
[1] Univ Fed Paraiba, Dept Estat, BR-58051900 Joao Pessoa, PB, Brazil
[2] Univ Fed Pernambuco, Ctr Informat, Av Prof Luiz Freire S-N, BR-50740540 Recife, PE, Brazil
关键词
Nonlinear regression; Interval-valued data; Monte Carlo; Cross-validation; LINEAR-MODEL;
D O I
10.1007/s10044-016-0538-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces a nonlinear regression model to interval-valued data. The method extends the classical nonlinear regression model in order to manage interval-valued datasets. The parameter estimates of the nonlinear model considers some optimization algorithms aiming to identify which one presents the best accuracy and precision in the prediction task. A detailed prediction performance study comparing the proposed nonlinear method and other linear regression methods for interval variables is presented based on K-fold cross-validation scheme with synthetic interval-valued datasets generated on a Monte Carlo framework. Moreover, two suitable real interval-valued datasets are considered to illustrate the usefulness and the performance of the approaches presented in this paper. The results suggested that the use of the nonlinear method is suitable for real datasets, as well as in the Monte Carlo simulation study.
引用
收藏
页码:809 / 824
页数:16
相关论文
共 50 条
  • [31] Applying constrained linear regression models to predict interval-valued data
    Neto, EDL
    de Carvalho, FDT
    Freire, ES
    [J]. KI2005: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2005, 3698 : 92 - 106
  • [32] A new method to fit a linear regression model for interval-valued data
    de Carvalho, FD
    Neto, ED
    Tenorio, CP
    [J]. KI 2004: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2004, 3238 : 295 - 306
  • [33] Linear regression of interval-valued data based on complete information in hypercubes
    Wang, Huiwen
    Guan, Rong
    Wu, Junjie
    [J]. JOURNAL OF SYSTEMS SCIENCE AND SYSTEMS ENGINEERING, 2012, 21 (04) : 422 - 442
  • [34] Partition of Interval-Valued Observations Using Regression
    Fei Liu
    L. Billard
    [J]. Journal of Classification, 2022, 39 : 55 - 77
  • [35] A regularized MM estimate for interval-valued regression
    Kong, Lingtao
    Gao, Xianwei
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238
  • [36] Testing of mean interval for interval-valued data
    Roy, Anuradha
    Klein, Daniel
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2020, 49 (20) : 5028 - 5044
  • [37] Polynomial regression interval-valued fuzzy systems
    Qiu, Yu
    Yang, Hong
    Zhang, Yan-Qing
    Zhao, Yichuan
    [J]. SOFT COMPUTING, 2008, 12 (02) : 137 - 145
  • [38] Regression Models for Symbolic Interval-Valued Variables
    Chacon, Jose Emmanuel
    Rodriguez, Oldemar
    [J]. ENTROPY, 2021, 23 (04)
  • [39] Constrained Interval-valued Linear Regression Model
    Li, Feng
    Li, Shoumei
    Tang, Nana
    Denoeux, Thierry
    [J]. 2017 20TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2017, : 402 - 409
  • [40] Partition of Interval-Valued Observations Using Regression
    Liu, Fei
    Billard, L.
    [J]. JOURNAL OF CLASSIFICATION, 2022, 39 (01) : 55 - 77