Applying constrained linear regression models to predict interval-valued data

被引:0
|
作者
Neto, EDL [1 ]
de Carvalho, FDT [1 ]
Freire, ES [1 ]
机构
[1] UFPE, Ctr Informat, BR-50740540 Recife, PE, Brazil
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Billard and Diday [2] were the first to present a regression method for interval-value data. De Carvalho et al [5] presented a new approach that incorporated the information contained in the ranges of the intervals and that presented a better performance when compared with the Billard and Diday method. However, both methods do not guarantee that the predicted values of the lower bounds ((y) over cap (Ui)) will be lower than the predicted values of the upper bounds (qui). This paper presents two approaches based on regression models with inequality constraints that guarantee the mathematical coherence between the predicted values (y) over cap (Li) and (y) over cap (Ui). The performance of these approaches, in relation with the methods proposed by Billard and Diday [2] and De Carvalho et al [5], will be evaluated in framework of Monte Carlo experiments.
引用
收藏
页码:92 / 106
页数:15
相关论文
共 50 条
  • [1] Constrained linear regression models for interval-valued data with dependence
    Lima Neto, Eufrasio de A.
    de Carvalho, Francisco de A. T.
    Coelho Neto, Jose F.
    [J]. 2007 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS, VOLS 1-8, 2007, : 258 - 263
  • [2] Constrained linear regression models for symbolic interval-valued variablesk
    Lima Neto, Eufrasio de A.
    de Carvalho, Francisco de A. T.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (02) : 333 - 347
  • [3] Constrained Regression for Interval-Valued Data
    Gonzalez-Rivera, Gloria
    Lin, Wei
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2013, 31 (04) : 473 - 490
  • [4] Constrained Interval-valued Linear Regression Model
    Li, Feng
    Li, Shoumei
    Tang, Nana
    Denoeux, Thierry
    [J]. 2017 20TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2017, : 402 - 409
  • [5] Multiple Linear Regression Models on Interval-valued Dengue Data with Interval-valued Climatic Variables
    Attanayake, A. M. C. H.
    Perera, S. S. N.
    Liyanage, U. P.
    [J]. INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2020, 59 (03): : 49 - 60
  • [6] Linear regression with interval-valued data
    Sun, Yan
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2016, 8 (01): : 54 - 60
  • [7] Compositional Linear Regression on Interval-valued Data
    Pekaslan, Direnc
    Wagner, Christian
    [J]. 2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021), 2021,
  • [8] Functional linear models for interval-valued data
    Beyaztas, Ufuk
    Shang, Han Lin
    Abdel-Salam, Abdel-Salam G.
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (07) : 3513 - 3532
  • [9] Linear regression analysis for interval-valued functional data
    Nasirzadeh, Roya
    Nasirzadeh, Fariba
    Mohammadi, Zohreh
    [J]. STAT, 2021, 10 (01):
  • [10] Local linear regression analysis for interval-valued data
    Jang, Jungteak
    Kang, Kee-Hoon
    [J]. COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2020, 27 (03) : 365 - 376