Linear regression analysis for interval-valued functional data

被引:2
|
作者
Nasirzadeh, Roya [1 ]
Nasirzadeh, Fariba [2 ,3 ]
Mohammadi, Zohreh [3 ]
机构
[1] Fasa Univ, Dept Stat, Fac Sci, Fasa 7461686131, Iran
[2] Shiraz Univ, Dept Stat, Fac Sci, Shiraz 7194684334, Iran
[3] Jahrom Univ, Dept Stat, Fac Sci, Persian Gulf Bulvd,Persian Gulf Sq,Motahari Bulvd, Jahrom 7413188941, Iran
来源
STAT | 2021年 / 10卷 / 01期
关键词
cross-validation; functional data analysis; functional linear model; functional principal component analysis; interval-valued data; CONVERGENCE; MODELS;
D O I
10.1002/sta4.392
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Y Recent advances in information technology have led to the appearance of high-dimensional and complex data sets which necessitates in-depth investigation on high-dimensional data analysis and modelling. The current study introduces five approaches to fit a functional linear regression model on interval-valued functional data. The proposed approaches are based on the functional linear regression models on a sort of data where the response is an interval-valued scalar random variable and the predictors are interval-valued functional. In the first proposed method, a functional linear regression model is fitted based on the midpoints of the intervals. The second method involves two independent functional linear models on the midpoint and the half range of the intervals. Furthermore, the third method is based on a combination of the midpoint and the half range of intervals. In the fourth one, we formulate an interval-valued functional predictor as a bivariate curve and introduce the bivariate functional linear regression model. Finally, the last method is based on Monte Carlo Markov Chain. The proposed methods are evaluated and compared through Monte Carlo simulation and real data analysis.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Linear regression with interval-valued data
    Sun, Yan
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2016, 8 (01): : 54 - 60
  • [2] Local linear regression analysis for interval-valued data
    Jang, Jungteak
    Kang, Kee-Hoon
    [J]. COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2020, 27 (03) : 365 - 376
  • [3] Compositional Linear Regression on Interval-valued Data
    Pekaslan, Direnc
    Wagner, Christian
    [J]. 2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021), 2021,
  • [4] Regression analysis for interval-valued data
    Billard, L
    Diday, E
    [J]. DATA ANALYSIS, CLASSIFICATION, AND RELATED METHODS, 2000, : 369 - 374
  • [5] Functional linear models for interval-valued data
    Beyaztas, Ufuk
    Shang, Han Lin
    Abdel-Salam, Abdel-Salam G.
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (07) : 3513 - 3532
  • [6] Multiple Linear Regression Models on Interval-valued Dengue Data with Interval-valued Climatic Variables
    Attanayake, A. M. C. H.
    Perera, S. S. N.
    Liyanage, U. P.
    [J]. INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2020, 59 (03): : 49 - 60
  • [7] Ordinal classification for interval-valued data and interval-valued functional data
    Alcacer, Aleix
    Martinez-Garcia, Marina
    Epifanio, Irene
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238
  • [8] Constrained linear regression models for interval-valued data with dependence
    Lima Neto, Eufrasio de A.
    de Carvalho, Francisco de A. T.
    Coelho Neto, Jose F.
    [J]. 2007 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS, VOLS 1-8, 2007, : 258 - 263
  • [9] Interval-valued data regression using partial linear model
    Wei, Yuan
    Wang, Shanshan
    Wang, Huiwen
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2017, 87 (16) : 3175 - 3194
  • [10] Constrained Regression for Interval-Valued Data
    Gonzalez-Rivera, Gloria
    Lin, Wei
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2013, 31 (04) : 473 - 490