Interval-valued data regression using partial linear model

被引:12
|
作者
Wei, Yuan [1 ]
Wang, Shanshan [1 ]
Wang, Huiwen [1 ,2 ]
机构
[1] Beihang Univ, Sch Econ & Management, Beijing 100191, Peoples R China
[2] Beijing Key Lab Emergence Support Simulat Technol, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Interval-valued data regression; partial linear model; bootstrap test; semi-parametric model;
D O I
10.1080/00949655.2017.1360298
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Semi-parametric modelling of interval-valued data is of great practical importance, as exampled by applications in economic and financial data analysis. We propose a flexible semi-parametric modelling of interval-valued data by integrating the partial linear regression model based on the Center & Range method, and investigate its estimation procedure. Furthermore, we introduce a test statistic that allows one to decide between a parametric linear model and a semi-parametric model, and approximate its null asymptotic distribution based on wild Bootstrap method to obtain the critical values. Extensive simulation studies are carried out to evaluate the performance of the proposed methodology and the new test. Moreover, several empirical data sets are analysed to document its practical applications.
引用
收藏
页码:3175 / 3194
页数:20
相关论文
共 50 条
  • [1] Linear regression with interval-valued data
    Sun, Yan
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2016, 8 (01): : 54 - 60
  • [2] Compositional Linear Regression on Interval-valued Data
    Pekaslan, Direnc
    Wagner, Christian
    [J]. 2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021), 2021,
  • [3] Constrained Interval-valued Linear Regression Model
    Li, Feng
    Li, Shoumei
    Tang, Nana
    Denoeux, Thierry
    [J]. 2017 20TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2017, : 402 - 409
  • [4] A new method to fit a linear regression model for interval-valued data
    de Carvalho, FD
    Neto, ED
    Tenorio, CP
    [J]. KI 2004: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2004, 3238 : 295 - 306
  • [5] Linear regression analysis for interval-valued functional data
    Nasirzadeh, Roya
    Nasirzadeh, Fariba
    Mohammadi, Zohreh
    [J]. STAT, 2021, 10 (01):
  • [6] Local linear regression analysis for interval-valued data
    Jang, Jungteak
    Kang, Kee-Hoon
    [J]. COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2020, 27 (03) : 365 - 376
  • [7] Multiple Linear Regression Models on Interval-valued Dengue Data with Interval-valued Climatic Variables
    Attanayake, A. M. C. H.
    Perera, S. S. N.
    Liyanage, U. P.
    [J]. INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2020, 59 (03): : 49 - 60
  • [8] Constrained linear regression models for interval-valued data with dependence
    Lima Neto, Eufrasio de A.
    de Carvalho, Francisco de A. T.
    Coelho Neto, Jose F.
    [J]. 2007 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS, VOLS 1-8, 2007, : 258 - 263
  • [9] Interval-valued linear regression model with an asymmetric Laplace distribution
    Guan, Li
    Li, Mengxiao
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2024,
  • [10] Interval-Valued Linear Model
    Wang, Xun
    Li, Shoumei
    Denoux, Thierry
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2015, 8 (01) : 114 - 127