Nonlinear regression applied to interval-valued data

被引:29
|
作者
Lima Neto, Eufrasio de A. [1 ]
de Carvalho, Francisco de A. T. [2 ]
机构
[1] Univ Fed Paraiba, Dept Estat, BR-58051900 Joao Pessoa, PB, Brazil
[2] Univ Fed Pernambuco, Ctr Informat, Av Prof Luiz Freire S-N, BR-50740540 Recife, PE, Brazil
关键词
Nonlinear regression; Interval-valued data; Monte Carlo; Cross-validation; LINEAR-MODEL;
D O I
10.1007/s10044-016-0538-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces a nonlinear regression model to interval-valued data. The method extends the classical nonlinear regression model in order to manage interval-valued datasets. The parameter estimates of the nonlinear model considers some optimization algorithms aiming to identify which one presents the best accuracy and precision in the prediction task. A detailed prediction performance study comparing the proposed nonlinear method and other linear regression methods for interval variables is presented based on K-fold cross-validation scheme with synthetic interval-valued datasets generated on a Monte Carlo framework. Moreover, two suitable real interval-valued datasets are considered to illustrate the usefulness and the performance of the approaches presented in this paper. The results suggested that the use of the nonlinear method is suitable for real datasets, as well as in the Monte Carlo simulation study.
引用
收藏
页码:809 / 824
页数:16
相关论文
共 50 条
  • [41] A Restricted Parametrized Model for Interval-Valued Regression
    Ying, Jingda
    Kabir, Shaily
    Wagner, Christian
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, FUZZ, 2023,
  • [42] Polynomial regression interval-valued fuzzy systems
    Yu Qiu
    Hong Yang
    Yan-Qing Zhang
    Yichuan Zhao
    [J]. Soft Computing, 2008, 12 : 137 - 145
  • [43] An integrated neural network with nonlinear output structure for interval-valued data
    Wang, Degang
    Song, Wenyan
    Pedrycz, Witold
    Cai, Lili
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 40 (01) : 673 - 683
  • [44] The Sign Test for Interval-Valued Data
    Grzegorzewski, Przemyslaw
    Spiewak, Martyna
    [J]. SOFT METHODS FOR DATA SCIENCE, 2017, 456 : 269 - 276
  • [45] Matrix Factorization with Interval-Valued Data
    Li, Mao-Lin
    Di Mauro, Francesco
    Candan, K. Selcuk
    Sapino, Maria Luisa
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2021, 33 (04) : 1644 - 1658
  • [46] Model averaging for interval-valued data
    Sun, Yuying
    Zhang, Xinyu
    Wan, Alan T. K.
    Wang, Shouyang
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2022, 301 (02) : 772 - 784
  • [47] Symbolic Clustering with Interval-Valued Data
    Sato-Ilic, Mika
    [J]. COMPLEX ADAPTIVE SYSTEMS, 2011, 6
  • [48] Interval Fuzzy c-Regression Models with Competitive Agglomeration for Symbolic Interval-Valued Data
    Chuang, Chen-Chia
    Jeng, Jin-Tsong
    Lin, Wei-Yang
    Hsiao, Chih-Ching
    Tao, Chin-Wang
    [J]. INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2020, 22 (03) : 891 - 900
  • [49] Spatial analysis for interval-valued data
    Workman, Austin
    Song, Joon Jin
    [J]. JOURNAL OF APPLIED STATISTICS, 2024, 51 (10) : 1946 - 1960
  • [50] Matrix Factorization with Interval-Valued Data
    Li, Mao-Lin
    Di Mauro, Francesco
    Candan, K. Selcuk
    Sapino, Maria Luisa
    [J]. 2020 IEEE 36TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2020), 2020, : 2042 - 2043