An integrated neural network with nonlinear output structure for interval-valued data

被引:4
|
作者
Wang, Degang [1 ]
Song, Wenyan [2 ]
Pedrycz, Witold [3 ]
Cai, Lili [1 ]
机构
[1] Dalian Univ Technol, Key Lab Intelligent Control & Optimizat Ind Equip, Minist Educ, Dalian, Peoples R China
[2] Dongbei Univ Finance & Econ, Sch Econ, Dalian, Peoples R China
[3] Univ Alberta, Dept Elect & Comp Engn, Edmonton, AB T6G 1H9, Canada
基金
国家重点研发计划;
关键词
Interval data; neural network; integrated model; fuzzy clustering; REGRESSION NETWORKS; ALGORITHM;
D O I
10.3233/JIFS-200500
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, an integrated model combining interval deep belief network (IDBN) and neural network with nonlinear weights, called IDBN-NN, is proposed for interval-valued data modeling. Firstly, the IDBN with variable learning rate is designed to initialize parameters of each sub-model. Based on a modified contrastive divergence algorithm the least square method is adopted to identify the coefficients of nonlinear weights in the output layer. Then, to improve the modeling accuracy, the Fuzzy C-Means (FCM) method and the Particle Swarm Optimization (PSO) algorithm are applied to tune the weights of sub-models. Though each sub-model can capture the nonlinear feature of the original system, by intersecting cut sets the synthesizing modeling scheme can further improve the performance of the proposed model. Some numerical examples show that the IDBN-NN with nonlinear output structure can achieve higher accuracy than some interval-valued data modeling methods.
引用
收藏
页码:673 / 683
页数:11
相关论文
共 50 条
  • [1] An interval-valued fuzzy competitive neural network
    College of Information Engineering, Dalian University, Dalian 116622
    [J]. J. Donghua Univ, 2006, 6 (137-140):
  • [2] An Interval-valued Fuzzy Competitive Neural Network
    邓冠男
    邹开其
    [J]. Journal of Donghua University(English Edition), 2006, (06) : 137 - 140
  • [3] Interval-valued fuzzy competitive neural network
    Deng, Guan-Nan
    Zou, Kai-Qi
    [J]. Journal of Donghua University (English Edition), 2006, 23 (06) : 137 - 140
  • [4] Interval-valued data prediction via regularized artificial neural network
    Yang, Zebin
    Lin, Dennis K. J.
    Zhang, Aijun
    [J]. NEUROCOMPUTING, 2019, 331 : 336 - 345
  • [5] Nonlinear regression applied to interval-valued data
    Lima Neto, Eufrasio de A.
    de Carvalho, Francisco de A. T.
    [J]. PATTERN ANALYSIS AND APPLICATIONS, 2017, 20 (03) : 809 - 824
  • [6] Nonlinear regression applied to interval-valued data
    Eufrásio de A. Lima Neto
    Francisco de A. T. de Carvalho
    [J]. Pattern Analysis and Applications, 2017, 20 : 809 - 824
  • [7] Ordinal classification for interval-valued data and interval-valued functional data
    Alcacer, Aleix
    Martinez-Garcia, Marina
    Epifanio, Irene
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238
  • [8] A clusterwise nonlinear regression algorithm for interval-valued data
    de Carvalho, Francisco de A. T.
    Lima Neto, Eufrasio de A.
    da Silva, Kassio C. F.
    [J]. INFORMATION SCIENCES, 2021, 555 : 357 - 385
  • [9] Simulation and evaluation of interval-valued fuzzy linear Fredholm integral equations with interval-valued fuzzy neural network
    Otadi, Mahmood
    Mosleh, Maryam
    [J]. NEUROCOMPUTING, 2016, 205 : 519 - 528
  • [10] Panel Interval-Valued Data Nonlinear Regression Models and Applications
    Ji, Ai-bing
    Li, Qing-qing
    Zhang, Jin-jin
    [J]. COMPUTATIONAL ECONOMICS, 2023,