Bootstrap methods for bias correction and confidence interval estimation for nonlinear quantile regression of longitudinal data

被引:16
|
作者
Karlsson, Andreas [1 ]
机构
[1] Uppsala Univ, Cent Hosp, Ctr Clin Res Vasteras, Vasteras, Sweden
关键词
autocorrelated errors; bias reduction; dependent errors; median regression; panel data; repeated measurements; MEDIAN REGRESSION;
D O I
10.1080/00949650802221180
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper examines the use of bootstrapping for bias correction and calculation of confidence intervals (CIs) for a weighted nonlinear quantile regression estimator adjusted to the case of longitudinal data. Different weights and types of CIs are used and compared by computer simulation using a logistic growth function and error terms following an AR(1) model. The results indicate that bias correction reduces the bias of a point estimator but fails for CI calculations. A bootstrap percentile method and a normal approximation method perform well for two weights when used without bias correction. Taking both coverage and lengths of CIs into consideration, a non-bias-corrected percentile method with an unweighted estimator performs best.
引用
收藏
页码:1205 / 1218
页数:14
相关论文
共 50 条
  • [41] Estimation and test for quantile nonlinear cointegrating regression
    Li, Haiqi
    Zheng, Chaowen
    Guo, Yu
    ECONOMICS LETTERS, 2016, 148 : 27 - 32
  • [42] Bootstrap confidence interval methods for DeFries-Fulker models
    O'Keefe, Patrick
    Rodgers, Joe
    BEHAVIOR GENETICS, 2018, 48 (06) : 503 - 503
  • [43] Bias-corrected quantile regression estimation of censored regression models
    P. Čížek
    S. Sadikoglu
    Statistical Papers, 2018, 59 : 215 - 247
  • [44] Bias-corrected quantile regression estimation of censored regression models
    Cizek, P.
    Sadikoglu, S.
    STATISTICAL PAPERS, 2018, 59 (01) : 215 - 247
  • [45] Confidence estimation via the parametric bootstrap in logistic joinpoint regression
    Gill, Ryan
    Rempala, Grzegorz A.
    Czajkowski, Michal
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (09) : 3132 - 3141
  • [46] BETTER BOOTSTRAP CONFIDENCE-INTERVALS FOR REGRESSION CURVE ESTIMATION
    HARDLE, W
    HUET, S
    JOLIVET, E
    STATISTICS, 1995, 26 (04) : 287 - 306
  • [47] Heterogeneous quantile regression for longitudinal data with structures
    Hou, Zhaohan
    Wang, Lei
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2024, 194
  • [48] Bayesian quantile regression for ordinal longitudinal data
    Alhamzawi, Rahim
    Ali, Haithem Taha Mohammad
    JOURNAL OF APPLIED STATISTICS, 2018, 45 (05) : 815 - 828
  • [49] Bayesian quantile regression for longitudinal count data
    Jantre, Sanket
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (01) : 103 - 127
  • [50] Distributed quantile regression for longitudinal big data
    Ye Fan
    Nan Lin
    Liqun Yu
    Computational Statistics, 2024, 39 : 751 - 779