Empirical likelihood for quantile regression models with longitudinal data

被引:41
|
作者
Wang, Huixia Judy [2 ]
Zhu, Zhongyi [1 ]
机构
[1] Fudan Univ, Dept Stat, Shanghai 200433, Peoples R China
[2] N Carolina State Univ, Dept Stat, Raleigh, NC 27695 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Bartlett correction; Confidence region; Estimating equation; Hypothesis test; Kernel smoothing; Quantile regression; INFERENCE; ESTIMATORS;
D O I
10.1016/j.jspi.2010.11.017
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We develop two empirical likelihood-based inference procedures for longitudinal data under the framework of quantile regression. The proposed methods avoid estimating the unknown error density function and the intra-subject correlation involved in the asymptotic covariance matrix of the quantile estimators. By appropriately smoothing the quantile score function, the empirical likelihood approach is shown to have a higher-order accuracy through the Bartlett correction. The proposed methods exhibit finite-sample advantages over the normal approximation-based and bootstrap methods in a simulation study and the analysis of a longitudinal ophthalmology data set. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1603 / 1615
页数:13
相关论文
共 50 条
  • [1] Empirical likelihood and quantile regression in longitudinal data analysis
    Tang, Cheng Yong
    Leng, Chenlei
    [J]. BIOMETRIKA, 2011, 98 (04) : 1001 - 1006
  • [2] Weighted quantile regression for longitudinal data using empirical likelihood
    Yuan XiaoHui
    Lin Nan
    Dong XiaoGang
    Liu TianQing
    [J]. SCIENCE CHINA-MATHEMATICS, 2017, 60 (01) : 147 - 164
  • [3] Weighted quantile regression for longitudinal data using empirical likelihood
    XiaoHui Yuan
    Nan Lin
    XiaoGang Dong
    TianQing Liu
    [J]. Science China Mathematics, 2017, 60 : 147 - 164
  • [4] Weighted quantile regression for longitudinal data using empirical likelihood
    YUAN XiaoHui
    LIN Nan
    DONG XiaoGang
    LIU TianQing
    [J]. Science China Mathematics, 2017, 60 (01) : 147 - 164
  • [5] Empirical-likelihood-based confidence intervals for quantile regression models with longitudinal data
    Li, Mei
    Ratnasingam, Suthakaran
    Ning, Wei
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2022, 92 (12) : 2536 - 2553
  • [6] An empirical likelihood method for quantile regression models with censored data
    Gao, Qibing
    Zhou, Xiuqing
    Feng, Yanqin
    Du, Xiuli
    Liu, XiaoXiao
    [J]. METRIKA, 2021, 84 (01) : 75 - 96
  • [7] An empirical likelihood method for quantile regression models with censored data
    Qibing Gao
    Xiuqing Zhou
    Yanqin Feng
    Xiuli Du
    XiaoXiao Liu
    [J]. Metrika, 2021, 84 : 75 - 96
  • [8] Conditional empirical likelihood for quantile regression models
    Wu Wang
    Zhongyi Zhu
    [J]. Metrika, 2017, 80 : 1 - 16
  • [9] Conditional empirical likelihood for quantile regression models
    Wang, Wu
    Zhu, Zhongyi
    [J]. METRIKA, 2017, 80 (01) : 1 - 16
  • [10] Empirical likelihood for quantile regression models with response data missing at random
    Luo, S.
    Pang, Shuxia
    [J]. OPEN MATHEMATICS, 2017, 15 : 317 - 330