Weighted quantile regression for longitudinal data using empirical likelihood

被引:0
|
作者
YUAN XiaoHui [1 ]
LIN Nan [2 ]
DONG XiaoGang [1 ]
LIU TianQing [3 ]
机构
[1] School of Basic Science, Changchun University of Technology
[2] Department of Mathematics, Washington University in St.Louis
[3] School of Mathematics, Jilin University
基金
中国国家自然科学基金;
关键词
empirical likelihood; estimating equation; influence function; longitudinal data; weighted quantile regression;
D O I
暂无
中图分类号
O212.1 [一般数理统计];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper proposes a new weighted quantile regression model for longitudinal data with weights chosen by empirical likelihood(EL). This approach efficiently incorporates the information from the conditional quantile restrictions to account for within-subject correlations. The resulted estimate is computationally simple and has good performance under modest or high within-subject correlation. The efficiency gain is quantified theoretically and illustrated via simulation and a real data application.
引用
收藏
页码:147 / 164
页数:18
相关论文
共 50 条
  • [1] Weighted quantile regression for longitudinal data using empirical likelihood
    Yuan XiaoHui
    Lin Nan
    Dong XiaoGang
    Liu TianQing
    [J]. SCIENCE CHINA-MATHEMATICS, 2017, 60 (01) : 147 - 164
  • [2] Weighted quantile regression for longitudinal data using empirical likelihood
    XiaoHui Yuan
    Nan Lin
    XiaoGang Dong
    TianQing Liu
    [J]. Science China Mathematics, 2017, 60 : 147 - 164
  • [3] Empirical likelihood and quantile regression in longitudinal data analysis
    Tang, Cheng Yong
    Leng, Chenlei
    [J]. BIOMETRIKA, 2011, 98 (04) : 1001 - 1006
  • [4] Empirical likelihood for quantile regression models with longitudinal data
    Wang, Huixia Judy
    Zhu, Zhongyi
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (04) : 1603 - 1615
  • [5] Weighted quantile regression with missing covariates using empirical likelihood
    Liu, Tianqing
    Yuan, Xiaohui
    [J]. STATISTICS, 2016, 50 (01) : 89 - 113
  • [6] Weighted quantile regression for longitudinal data
    Lu, Xiaoming
    Fan, Zhaozhi
    [J]. COMPUTATIONAL STATISTICS, 2015, 30 (02) : 569 - 592
  • [7] Weighted quantile regression for longitudinal data
    Xiaoming Lu
    Zhaozhi Fan
    [J]. Computational Statistics, 2015, 30 : 569 - 592
  • [8] Empirical-likelihood-based confidence intervals for quantile regression models with longitudinal data
    Li, Mei
    Ratnasingam, Suthakaran
    Ning, Wei
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2022, 92 (12) : 2536 - 2553
  • [9] Empirical likelihood weighted composite quantile regression with partially missing covariates
    Sun, Jing
    Ma, Yunyan
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2017, 29 (01) : 137 - 150
  • [10] Weighted empirical likelihood for quantile regression with non ignorable missing covariates
    Yuan, Xiaohui
    Dong, Xiaogang
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2019, 48 (12) : 3068 - 3084