Weighted empirical likelihood for quantile regression with non ignorable missing covariates

被引:0
|
作者
Yuan, Xiaohui [1 ]
Dong, Xiaogang [1 ]
机构
[1] Changchun Univ Technol, Sch Basic Sci, Changchun, Jilin, Peoples R China
关键词
Complete-case-analysis estimator; empirical likelihood; non ignorable missing covariates; quantile regression; INFERENCE; IMPUTATION;
D O I
10.1080/03610926.2018.1473604
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we propose an empirical likelihood-based weighted estimator of regression parameter in quantile regression model with non ignorable missing covariates. The proposed estimator is computationally simple and achieves semiparametric efficiency if the probability of missingness on the fully observed variables is correctly specified. The efficiency gain of the proposed estimator over the complete-case-analysis estimator is quantified theoretically and illustrated via simulation and a real data application.
引用
收藏
页码:3068 / 3084
页数:17
相关论文
共 50 条