Symmetric regression quantile and its application to robust estimation for the nonlinear regression model

被引:4
|
作者
Chen, LA
Tran, LT
Lin, LC
机构
[1] Indiana Univ, Dept Math, Bloomington, IN 47405 USA
[2] Natl Chiao Tung Univ, Inst Stat, Hsinchu, Taiwan
关键词
nonlinear regression; regression quantile; trimmed mean;
D O I
10.1016/j.jspi.2003.09.014
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Populational conditional quantiles in terms of percentage alpha are useful as indices for identifying outliers. We propose a class of symmetric quantiles for estimating unknown nonlinear regression conditional quantiles. In large samples, symmetric quantiles are more efficient than regression quantiles considered by Koenker and Bassett (Econometrica 46 (1978) 33) for small or large values of alpha, when the underlying distribution is symmetric, in the sense that they have smaller asymptotic variances. Symmetric quantiles play a useful role in identifying outliers. In estimating nonlinear regression parameters by symmetric trimmed means constructed by symmetric quantiles, we show that their asymptotic variances can be very close to (or can even attain) the Cramer-Rao lower bound under symmetric heavy-tailed error distributions, whereas the usual robust and nonrobust estimators cannot. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:423 / 440
页数:18
相关论文
共 50 条
  • [1] Model-robust designs for nonlinear quantile regression
    Selvaratnam, Selvakkadunko
    Kong, Linglong
    Wiens, Douglas P.
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2021, 30 (01) : 221 - 232
  • [2] Robust and efficient estimation for nonlinear model based on composite quantile regression with missing covariates
    Zhao, Qiang
    Zhang, Chao
    Wu, Jingjing
    Wang, Xiuli
    [J]. AIMS MATHEMATICS, 2022, 7 (05): : 8127 - 8146
  • [3] Robust estimation and regression with parametric quantile functions
    Sottile, Gianluca
    Frumento, Paolo
    [J]. Computational Statistics and Data Analysis, 2022, 171
  • [4] Robust estimation and regression with parametric quantile functions
    Sottile, Gianluca
    Frumento, Paolo
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 171
  • [5] Nonlinear quantile regression estimation of longitudinal data
    Karlsson, Andreas
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2008, 37 (01) : 114 - 131
  • [6] Estimation and test for quantile nonlinear cointegrating regression
    Li, Haiqi
    Zheng, Chaowen
    Guo, Yu
    [J]. ECONOMICS LETTERS, 2016, 148 : 27 - 32
  • [7] A SINGLE-INDEX QUANTILE REGRESSION MODEL AND ITS ESTIMATION
    Kong, Efang
    Xia, Yingcun
    [J]. ECONOMETRIC THEORY, 2012, 28 (04) : 730 - 768
  • [8] An application of shrinkage estimation to the nonlinear regression model
    Ahmed, S. Ejaz
    Nicol, Christopher J.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (11) : 3309 - 3321
  • [9] ROBUST TEST BASED ON NONLINEAR REGRESSION QUANTILE ESTIMATORS
    Choi, Seung Hoe
    Kim, Kyung Joong
    Lee, Myung Sook
    [J]. COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2005, 20 (01): : 145 - 159
  • [10] Model-Robust Designs for Quantile Regression
    Kong, Linglong
    Wiens, Douglas P.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2015, 110 (509) : 233 - 245