Video Anomaly Detection using Selective Spatio-Temporal Interest Points and Convolutional Sparse Coding

被引:2
|
作者
Cahyadi, Rudy [1 ]
Fadlil, Junaidillah [1 ]
机构
[1] Natl Taiwan Univ Sci & Technol, Dept Comp Sci & Informat Engn, Taipei, Taiwan
关键词
Video anomaly; Selective Spatio-temporal interest point; Convolutional sparse coding;
D O I
10.1109/WI-IAT.2015.217
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Finding substantial features is a significant approach to cope the challenges of video anomaly detection and localization. The specific important representation are selected to detect an event in video. State-of-the-art models explore this fashion by do seeking interest points both spatially and temporally. However, it has to very selective towards undesired object or background. Selective Spatio-Temporal Interest Points (SSTIP) address this issue. While, Convolutional Sparse Coding (CSC) with the capability to detect an anomaly event by produce more error in the reconstruction, is preferred rather than patch-based. It demonstrates that utilization SSTIP and CSC yields promising performance.
引用
收藏
页码:203 / 206
页数:4
相关论文
共 50 条
  • [21] STemGAN: spatio-temporal generative adversarial network for video anomaly detection
    Rituraj Singh
    Krishanu Saini
    Anikeit Sethi
    Aruna Tiwari
    Sumeet Saurav
    Sanjay Singh
    [J]. Applied Intelligence, 2023, 53 : 28133 - 28152
  • [22] Video anomaly detection based on spatio-temporal relationships among objects
    Wang, Yang
    Liu, Tianying
    Zhou, Jiaogen
    Guan, Jihong
    [J]. NEUROCOMPUTING, 2023, 532 : 141 - 151
  • [23] STemGAN: spatio-temporal generative adversarial network for video anomaly detection
    Singh, Rituraj
    Saini, Krishanu
    Sethi, Anikeit
    Tiwari, Aruna
    Saurav, Sumeet
    Singh, Sanjay
    [J]. APPLIED INTELLIGENCE, 2023, 53 (23) : 28133 - 28152
  • [24] Video Anomaly Detection by Solving Decoupled Spatio-Temporal Jigsaw Puzzles
    Wang, Guodong
    Wang, Yunhong
    Qin, Jie
    Zhang, Dongming
    Bao, Xiuguo
    Huang, Di
    [J]. COMPUTER VISION, ECCV 2022, PT X, 2022, 13670 : 494 - 511
  • [25] Weakly-Supervised Spatio-Temporal Anomaly Detection in Surveillance Video
    Wu, Jie
    Zhang, Wei
    Li, Guanbin
    Wu, Wenhao
    Tan, Xiao
    Li, Yingying
    Ding, Errui
    Lin, Liang
    [J]. PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 1172 - 1178
  • [26] Anomaly Detection Based on Spatio-Temporal and Sparse Features of Network Traffic in VANETs
    Nie, Laisen
    Wang, Huizhi
    Gong, Shimin
    Ning, Zhaolong
    Obaidat, Mohammad S.
    Hsiao, Kuei-Fang
    [J]. 2019 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2019,
  • [27] Anomaly Detection Based on Spatio-Temporal and Sparse Features of Network Traffic in VANETs
    Nie, Laisen
    Wu, Yixuan
    Wang, Huizhi
    Li, Yongkang
    [J]. IEEE ACCESS, 2019, 7 : 177954 - 177964
  • [28] Anomaly detection based on spatio-temporal sparse representation and visual attention analysis
    Wang, Chen
    Yao, Hongxun
    Sun, Xiaoshuai
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2017, 76 (05) : 6263 - 6279
  • [29] Anomaly detection based on spatio-temporal sparse representation and visual attention analysis
    Chen Wang
    Hongxun Yao
    Xiaoshuai Sun
    [J]. Multimedia Tools and Applications, 2017, 76 : 6263 - 6279
  • [30] A Hierarchical Spatio-Temporal Graph Convolutional Neural Network for Anomaly Detection in Videos
    Zeng, Xianlin
    Jiang, Yalong
    Ding, Wenrui
    Li, Hongguang
    Hao, Yafeng
    Qiu, Zifeng
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (01) : 200 - 212