Video Anomaly Detection using Selective Spatio-Temporal Interest Points and Convolutional Sparse Coding

被引:2
|
作者
Cahyadi, Rudy [1 ]
Fadlil, Junaidillah [1 ]
机构
[1] Natl Taiwan Univ Sci & Technol, Dept Comp Sci & Informat Engn, Taipei, Taiwan
关键词
Video anomaly; Selective Spatio-temporal interest point; Convolutional sparse coding;
D O I
10.1109/WI-IAT.2015.217
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Finding substantial features is a significant approach to cope the challenges of video anomaly detection and localization. The specific important representation are selected to detect an event in video. State-of-the-art models explore this fashion by do seeking interest points both spatially and temporally. However, it has to very selective towards undesired object or background. Selective Spatio-Temporal Interest Points (SSTIP) address this issue. While, Convolutional Sparse Coding (CSC) with the capability to detect an anomaly event by produce more error in the reconstruction, is preferred rather than patch-based. It demonstrates that utilization SSTIP and CSC yields promising performance.
引用
收藏
页码:203 / 206
页数:4
相关论文
共 50 条
  • [41] HIERARCHICAL ACTIVITY DISCOVERY WITHIN SPATIO-TEMPORAL CONTEXT FOR VIDEO ANOMALY DETECTION
    Xu, Dan
    Wu, Xinyu
    Song, Dezhen
    Li, Nannan
    Chen, Yen-Lun
    [J]. 2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 3597 - 3601
  • [42] Bidirectional Spatio-Temporal Feature Learning With Multiscale Evaluation for Video Anomaly Detection
    Zhong, Yuanhong
    Chen, Xia
    Hu, Yongting
    Tang, Panliang
    Ren, Fan
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (12) : 8285 - 8296
  • [43] Scale-Aware Spatio-Temporal Relation Learning for Video Anomaly Detection
    Li, Guoqiu
    Cai, Guanxiong
    Zeng, Xingyu
    Zhao, Rui
    [J]. COMPUTER VISION - ECCV 2022, PT IV, 2022, 13664 : 333 - 350
  • [44] Video anomaly detection based on attention and efficient spatio-temporal feature extraction
    Rahimpour, Seyed Mohammad
    Kazemi, Mohammad
    Moallem, Payman
    Safayani, Mehran
    [J]. VISUAL COMPUTER, 2024, 40 (10): : 6825 - 6841
  • [45] Hybrid coding of video with spatio-temporal scalability using subband decomposition
    Domanski, M
    Luczak, A
    Mackowiak, S
    Swierczynski, R
    [J]. VISUAL COMMUNICATIONS AND IMAGE PROCESSING '99, PARTS 1-2, 1998, 3653 : 1018 - 1025
  • [46] Adaptive Spatio-Temporal Convolutional Network for Video Deblurring
    Duan, Fengzhi
    Yao, Hongxun
    [J]. IMAGE AND GRAPHICS (ICIG 2021), PT III, 2021, 12890 : 777 - 788
  • [47] Spatio-temporal Anomaly Detection in Traffic Data
    Wang, Qing
    Lv, Weifeng
    Du, Bowen
    [J]. ISCSIC'18: PROCEEDINGS OF THE 2ND INTERNATIONAL SYMPOSIUM ON COMPUTER SCIENCE AND INTELLIGENT CONTROL, 2018,
  • [48] Action Recognition Using Super Sparse Coding Vector with Spatio-temporal Awareness
    Yang, Xiaodong
    Tian, YingLi
    [J]. COMPUTER VISION - ECCV 2014, PT II, 2014, 8690 : 727 - 741
  • [49] Spatio-temporal compression of the motion field in video coding
    Grigoriu, L
    [J]. 2001 IEEE FOURTH WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING, 2001, : 129 - 134
  • [50] Video copy detection using spatio-temporal sequence matching
    Kim, C
    [J]. STORAGE AND RETRIEVAL METHODS AND APPLICATIONS FOR MULTIMEDIA 2004, 2004, 5307 : 70 - 79