Action Recognition Using Super Sparse Coding Vector with Spatio-temporal Awareness

被引:0
|
作者
Yang, Xiaodong [1 ]
Tian, YingLi [1 ]
机构
[1] CUNY City Coll, Dept Elect Engn, New York, NY 10031 USA
来源
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a novel framework for human action recognition based on sparse coding. We introduce an effective coding scheme to aggregate low-level descriptors into the super descriptor vector (SDV). In order to incorporate the spatio-temporal information, we propose a novel approach of super location vector (SLV) to model the space-time locations of local interest points in a much more compact way compared to the spatio-temporal pyramid representations. SDV and SLV are in the end combined as the super sparse coding vector (SSCV) which jointly models the motion, appearance, and location cues. This representation is computationally efficient and yields superior performance while using linear classifiers. In the extensive experiments, our approach significantly outperforms the state-of-the-art results on the two public benchmark datasets, i.e., HMDB51 and YouTube.
引用
收藏
页码:727 / 741
页数:15
相关论文
共 50 条
  • [1] Spatio-Temporal Laplacian Pyramid Coding for Action Recognition
    Shao, Ling
    Zhen, Xiantong
    Tao, Dacheng
    Li, Xuelong
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2014, 44 (06) : 817 - 827
  • [2] Hierarchical and Spatio-Temporal Sparse Representation for Human Action Recognition
    Tian, Yi
    Kong, Yu
    Ruan, Qiuqi
    An, Gaoyun
    Fu, Yun
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (04) : 1748 - 1762
  • [3] Action recognition using global spatio-temporal features derived from sparse representations
    Somasundaram, Guruprasad
    Cherian, Anoop
    Morellas, Vassilios
    Papanikolopoulos, Nikolaos
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 2014, 123 : 1 - 13
  • [4] Spatio-temporal super-resolution of sparse aperture array for space situation awareness
    Zhang, Tinghua
    Li, Chunyang
    Li, Yingchun
    Fan, Guihua
    Tian, Leiyuan
    Sun, Houpeng
    [J]. AOPC 2021: OPTICAL SENSING AND IMAGING TECHNOLOGY, 2021, 12065
  • [5] ACTION RECOGNITION USING SPATIO-TEMPORAL DIFFERENTIAL MOTION
    Yadav, Gaurav Kumar
    Sethi, Amit
    [J]. 2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 3415 - 3419
  • [6] Human Action Recognition Using Spatio-temporal Classification
    Fang, Chin-Hsien
    Chen, Ju-Chin
    Tseng, Chien-Chung
    Lien, Jenn-Jier James
    [J]. COMPUTER VISION - ACCV 2009, PT II, 2010, 5995 : 98 - 109
  • [7] Human Action Recognition Using LBP-TOP as Sparse Spatio-Temporal Feature Descriptor
    Mattivi, Riccardo
    Shao, Ling
    [J]. COMPUTER ANALYSIS OF IMAGES AND PATTERNS, PROCEEDINGS, 2009, 5702 : 740 - 747
  • [8] Action recognition using spatio-temporal regularity based features
    Goodhart, Taylor
    Yan, Pingkun
    Shah, Mubarak
    [J]. 2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 745 - 748
  • [9] Action Recognition Using Discriminative Spatio-Temporal Neighborhood Features
    Cheng, Shi-Lei
    Yang, Jiang-Feng
    Ma, Zheng
    Xie, Mei
    [J]. INTERNATIONAL CONFERENCE ON COMPUTER NETWORKS AND INFORMATION SECURITY (CNIS 2015), 2015, : 166 - 172
  • [10] Action Recognition Using a Spatio-Temporal Model in Dynamic Scenes
    Chathuramali, K. G. Manosha
    Rodrigo, Ranga
    [J]. 2014 7TH INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION FOR SUSTAINABILITY (ICIAFS), 2014,