Video Anomaly Detection using Selective Spatio-Temporal Interest Points and Convolutional Sparse Coding

被引:2
|
作者
Cahyadi, Rudy [1 ]
Fadlil, Junaidillah [1 ]
机构
[1] Natl Taiwan Univ Sci & Technol, Dept Comp Sci & Informat Engn, Taipei, Taiwan
关键词
Video anomaly; Selective Spatio-temporal interest point; Convolutional sparse coding;
D O I
10.1109/WI-IAT.2015.217
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Finding substantial features is a significant approach to cope the challenges of video anomaly detection and localization. The specific important representation are selected to detect an event in video. State-of-the-art models explore this fashion by do seeking interest points both spatially and temporally. However, it has to very selective towards undesired object or background. Selective Spatio-Temporal Interest Points (SSTIP) address this issue. While, Convolutional Sparse Coding (CSC) with the capability to detect an anomaly event by produce more error in the reconstruction, is preferred rather than patch-based. It demonstrates that utilization SSTIP and CSC yields promising performance.
引用
收藏
页码:203 / 206
页数:4
相关论文
共 50 条
  • [31] A Hierarchical Spatio-Temporal Graph Convolutional Neural Network for Anomaly Detection in Videos
    Zeng, Xianlin
    Jiang, Yalong
    Ding, Wenrui
    Li, Hongguang
    Hao, Yafeng
    Qiu, Zifeng
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (01) : 200 - 212
  • [32] Spatio-temporal scalability for MPEG video coding
    Domanski, M
    Luczak, A
    Mackowiak, S
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2000, 10 (07) : 1088 - 1093
  • [33] Video coding with spatio-temporal texture synthesis
    Zhu, Chunbo
    Sun, Xiaoyan
    Wu, Feng
    Li, Houqiang
    [J]. 2007 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOLS 1-5, 2007, : 112 - +
  • [34] Spatio-temporal feature points detection and extraction based on convolutional neural network
    Yang, Chaoyu
    Liu, Qian
    Liang, Yincheng
    [J]. PROCEEDINGS OF THE 2015 2ND INTERNATIONAL CONFERENCE ON ELECTRICAL, COMPUTER ENGINEERING AND ELECTRONICS (ICECEE 2015), 2015, 24 : 400 - 403
  • [35] Scalable spatio-temporal video indexing using sparse multiscale patches
    Piro, Paolo
    Anthoine, Sandrine
    Debreuve, Eric
    Barlaud, Michel
    [J]. CBMI: 2009 INTERNATIONAL WORKSHOP ON CONTENT-BASED MULTIMEDIA INDEXING, 2009, : 95 - 100
  • [36] Spatio-Temporal Anomaly Detection in Crowd Movement Using SIFT
    Ojha, Nitish
    Vaish, Abhishek
    [J]. PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON INVENTIVE SYSTEMS AND CONTROL (ICISC 2018), 2018, : 646 - 654
  • [37] Multi-view fall detection based on spatio-temporal interest points
    Su, Songzhi
    Wu, Sin-Sian
    Chen, Shu-Yuan
    Duh, Der-Jyh
    Li, Shaozi
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2016, 75 (14) : 8469 - 8492
  • [38] Anomaly detection with a moving camera using spatio-temporal codebooks
    Mateus T. Nakahata
    Lucas A. Thomaz
    Allan F. da Silva
    Eduardo A. B. da Silva
    Sergio L. Netto
    [J]. Multidimensional Systems and Signal Processing, 2018, 29 : 1025 - 1054
  • [39] Anomaly Detection with Spatio-Temporal Context Using Depth Images
    Ma, Xiaolin
    Lu, Tong
    Xu, Feiming
    Su, Feng
    [J]. 2012 21ST INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR 2012), 2012, : 2590 - 2593
  • [40] Multi-view fall detection based on spatio-temporal interest points
    Songzhi Su
    Sin-Sian Wu
    Shu-Yuan Chen
    Der-Jyh Duh
    Shaozi Li
    [J]. Multimedia Tools and Applications, 2016, 75 : 8469 - 8492