STemGAN: spatio-temporal generative adversarial network for video anomaly detection

被引:9
|
作者
Singh, Rituraj [1 ]
Saini, Krishanu [1 ]
Sethi, Anikeit [1 ]
Tiwari, Aruna [1 ]
Saurav, Sumeet [2 ]
Singh, Sanjay [2 ]
机构
[1] Indian Inst Technol Indore, Comp Sci & Engn, Indore 452020, Madhya Pradesh, India
[2] CSIR CEERI, Intelligent Syst Grp, Pilani 333031, Rajasthan, India
关键词
Anomaly detection; Video surveillance; Unsupervised learning; Generative adversarial networks; Spatio-temporal; Attention; ABNORMAL EVENT DETECTION; LOCALIZATION;
D O I
10.1007/s10489-023-04940-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Automatic detection and interpretation of abnormal events have become crucial tasks in large-scale video surveillance systems. The challenges arise from the lack of a clear definition of abnormality, which restricts the usage of supervised methods. To this end, we propose a novel unsupervised anomaly detection method, Spatio-Temporal Generative Adversarial Network (STemGAN). This framework consists of a generator and discriminator that learns from the video context, utilizing both spatial and temporal information to predict future frames. The generator follows an Autoencoder (AE) architecture, having a dual-stream encoder for extracting appearance and motion information, and a decoder having a Channel Attention (CA) module to focus on dynamic foreground features. In addition, we provide a transfer-learning method that enhances the generalizability of STemGAN. We use benchmark Anomaly Detection (AD) datasets to compare the performance of our approach with the existing state-of-the-art approaches using standard evaluation metrics, i.e., AUC (Area Under Curve) and EER (Equal Error Rate). The empirical results show that our proposed STemGAN outperforms the existing state-of-the-art methods achieving an AUC score of 97.5% on UCSDPed2, 86.0% on CUHK Avenue, 90.4% on Subway-entrance, and 95.2% on Subway-exit.
引用
收藏
页码:28133 / 28152
页数:20
相关论文
共 50 条
  • [1] STemGAN: spatio-temporal generative adversarial network for video anomaly detection
    Rituraj Singh
    Krishanu Saini
    Anikeit Sethi
    Aruna Tiwari
    Sumeet Saurav
    Sanjay Singh
    Applied Intelligence, 2023, 53 : 28133 - 28152
  • [2] Video spatio-temporal generative adversarial network for local action generation
    Liu, Xuejun
    Guo, Jiacheng
    Cui, Zhongji
    Liu, Ling
    Yan, Yong
    Sha, Yun
    JOURNAL OF ELECTRONIC IMAGING, 2023, 32 (05)
  • [3] Bidirectional spatio-temporal generative adversarial network for video super-resolution
    Yang, Peng
    Chen, Zhangquan
    Sun, Yuankang
    Hu, Zhongjian
    Li, Bing
    PATTERN ANALYSIS AND APPLICATIONS, 2025, 28 (01)
  • [4] Spatio-temporal prediction and reconstruction network for video anomaly detection
    Liu, Ting
    Zhang, Chengqing
    Niu, Xiaodong
    Wang, Liming
    PLOS ONE, 2022, 17 (05):
  • [5] A novel spatio-temporal memory network for video anomaly detection
    Li H.
    Chen M.
    Multimedia Tools and Applications, 2025, 84 (8) : 4603 - 4624
  • [6] Spatio-temporal generative adversarial network for gait anonymization
    Tieu, Ngoc-Dung T.
    Nguyen, Huy H.
    Hoang-Quoc Nguyen-Son
    Yamagishi, Junichi
    Echizen, Isao
    JOURNAL OF INFORMATION SECURITY AND APPLICATIONS, 2019, 46 : 307 - 319
  • [7] Video anomaly detection with spatio-temporal dissociation
    Chang, Yunpeng
    Tu, Zhigang
    Xie, Wei
    Luo, Bin
    Zhang, Shifu
    Sui, Haigang
    Yuan, Junsong
    PATTERN RECOGNITION, 2022, 122
  • [8] Spatio-Temporal AutoEncoder for Video Anomaly Detection
    Zhao, Yiru
    Deng, Bing
    Shen, Chen
    Liu, Yao
    Lu, Hongtao
    Hua, Xian-Sheng
    PROCEEDINGS OF THE 2017 ACM MULTIMEDIA CONFERENCE (MM'17), 2017, : 1933 - 1941
  • [9] Spatio-Temporal Generative Adversarial Networks
    Qin, Chao
    Gao, Xiaoguang
    CHINESE JOURNAL OF ELECTRONICS, 2020, 29 (04) : 623 - 631
  • [10] Spatio-Temporal Generative Adversarial Networks
    QIN Chao
    GAO Xiaoguang
    ChineseJournalofElectronics, 2020, 29 (04) : 623 - 631