Spatio-Temporal Generative Adversarial Networks

被引:0
|
作者
QIN Chao [1 ]
GAO Xiaoguang [1 ]
机构
[1] School of Electronics and Information Engineering, Northwestern Polytechnical University
基金
中国国家自然科学基金;
关键词
Spatio-temporal; Generative adversarial networks(GANs); Spatial discriminator; Temporal discriminator;
D O I
暂无
中图分类号
TP183 [人工神经网络与计算];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We designed a spatiotemporal generative adversarial network which given some initial data and random noise, generates a consecutive sequence of spatiotemporal samples that have a logical relationship.We build spatial discriminators and temporal discriminators to distinguish whether the samples generated by the generator meet the requirements for time and space coherence.The model is trained on the skeletal dataset and the Caltrans Performance Measurement System District 7 dataset.In contrast to traditional Generative adversarial networks(GANs), the proposed spatiotemporal GAN can generate logically coherent samples with the corresponding spatial and temporal features while avoiding mode collapse.In addition, we show that our model can generate different styles of spatiotemporal samples given different random noise inputs.This model will extend the potential range of applications of GANs to areas such as traffic information simulations and multiagent adversarial simulations.
引用
收藏
页码:623 / 631
页数:9
相关论文
共 50 条
  • [1] Spatio-Temporal Generative Adversarial Networks
    Qin, Chao
    Gao, Xiaoguang
    [J]. CHINESE JOURNAL OF ELECTRONICS, 2020, 29 (04) : 623 - 631
  • [2] Distributed spatio-temporal generative adversarial networks
    QIN Chao
    GAO Xiaoguang
    [J]. Journal of Systems Engineering and Electronics, 2020, 31 (03) : 578 - 592
  • [3] Distributed spatio-temporal generative adversarial networks
    Qin Chao
    Gao Xiaoguang
    [J]. JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2020, 31 (03) : 578 - 592
  • [4] Generative Adversarial Networks for Spatio-temporal Data: A Survey
    Gao, Nan
    Xue, Hao
    Shao, Wei
    Zhao, Sichen
    Qin, Kyle Kai
    Prabowo, Arian
    Rahaman, Mohammad Saiedur
    Salim, Flora D.
    [J]. ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2022, 13 (02)
  • [5] Modelling spatio-temporal ageing phenomena with deep Generative Adversarial Networks
    Papadopoulos, Stavros
    Dimitriou, Nikolaos
    Drosou, Anastasios
    Tzovaras, Dimitrios
    [J]. SIGNAL PROCESSING-IMAGE COMMUNICATION, 2021, 94
  • [6] Integrating Spatio-Temporal and Generative Adversarial Networks for Enhanced Nowcasting Performance
    Yu, Wenbin
    Wang, Suxun
    Zhang, Chengjun
    Chen, Yadang
    Sheng, Xinyu
    Yao, Yu
    Liu, Jie
    Liu, Gaoping
    [J]. REMOTE SENSING, 2023, 15 (15)
  • [7] Spatio-temporal generative adversarial network for gait anonymization
    Tieu, Ngoc-Dung T.
    Nguyen, Huy H.
    Hoang-Quoc Nguyen-Son
    Yamagishi, Junichi
    Echizen, Isao
    [J]. JOURNAL OF INFORMATION SECURITY AND APPLICATIONS, 2019, 46 : 307 - 319
  • [8] Robust spatial temporal imputation based on spatio-temporal generative adversarial nets
    Huang, Longji
    Huang, Jianbin
    Li, He
    Cui, Jiangtao
    [J]. KNOWLEDGE-BASED SYSTEMS, 2023, 279
  • [9] STGAN: Spatio-Temporal Generative Adversarial Network for Traffic Data Imputation
    Yuan, Ye
    Zhang, Yong
    Wang, Boyue
    Peng, Yuan
    Hu, Yongli
    Yin, Baocai
    [J]. IEEE TRANSACTIONS ON BIG DATA, 2023, 9 (01) : 200 - 211
  • [10] Multimodal Spatio-Temporal Prediction with Stochastic Adversarial Networks
    Saxena, Divya
    Cao, Jiannong
    [J]. ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2022, 13 (02)