Spatio-Temporal Generative Adversarial Networks

被引:0
|
作者
QIN Chao [1 ]
GAO Xiaoguang [1 ]
机构
[1] School of Electronics and Information Engineering, Northwestern Polytechnical University
基金
中国国家自然科学基金;
关键词
Spatio-temporal; Generative adversarial networks(GANs); Spatial discriminator; Temporal discriminator;
D O I
暂无
中图分类号
TP183 [人工神经网络与计算];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We designed a spatiotemporal generative adversarial network which given some initial data and random noise, generates a consecutive sequence of spatiotemporal samples that have a logical relationship.We build spatial discriminators and temporal discriminators to distinguish whether the samples generated by the generator meet the requirements for time and space coherence.The model is trained on the skeletal dataset and the Caltrans Performance Measurement System District 7 dataset.In contrast to traditional Generative adversarial networks(GANs), the proposed spatiotemporal GAN can generate logically coherent samples with the corresponding spatial and temporal features while avoiding mode collapse.In addition, we show that our model can generate different styles of spatiotemporal samples given different random noise inputs.This model will extend the potential range of applications of GANs to areas such as traffic information simulations and multiagent adversarial simulations.
引用
收藏
页码:623 / 631
页数:9
相关论文
共 50 条
  • [11] STemGAN: spatio-temporal generative adversarial network for video anomaly detection
    Rituraj Singh
    Krishanu Saini
    Anikeit Sethi
    Aruna Tiwari
    Sumeet Saurav
    Sanjay Singh
    [J]. Applied Intelligence, 2023, 53 : 28133 - 28152
  • [12] STemGAN: spatio-temporal generative adversarial network for video anomaly detection
    Singh, Rituraj
    Saini, Krishanu
    Sethi, Anikeit
    Tiwari, Aruna
    Saurav, Sumeet
    Singh, Sanjay
    [J]. APPLIED INTELLIGENCE, 2023, 53 (23) : 28133 - 28152
  • [13] Video spatio-temporal generative adversarial network for local action generation
    Liu, Xuejun
    Guo, Jiacheng
    Cui, Zhongji
    Liu, Ling
    Yan, Yong
    Sha, Yun
    [J]. JOURNAL OF ELECTRONIC IMAGING, 2023, 32 (05)
  • [14] Adherent Raindrop Removal with Self-Supervised Attention Maps and Spatio-Temporal Generative Adversarial Networks
    Alletto, Stefano
    Carlin, Casey
    Rigazio, Luca
    Ishii, Yasunori
    Tsukizawa, Sotaro
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 2329 - 2338
  • [15] Curb-GAN: Conditional Urban Traffic Estimation through Spatio-Temporal Generative Adversarial Networks
    Zhang, Yingxue
    Li, Yanhua
    Zhou, Xun
    Kong, Xiangnan
    Luo, Jun
    [J]. KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 842 - 852
  • [16] Bidirectional spatio-temporal generative adversarial network for video super-resolution
    Peng Yang
    Zhangquan Chen
    Yuankang Sun
    Zhongjian Hu
    Bing Li
    [J]. Pattern Analysis and Applications, 2025, 28 (1)
  • [17] STAN: SPATIO-TEMPORAL ADVERSARIAL NETWORKS FOR ABNORMAL EVENT DETECTION
    Lee, Sangmin
    Kim, Hak Gu
    Ro, Yong Man
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 1323 - 1327
  • [18] ST-LBAGAN: Spatio-temporal learnable bidirectional attention generative adversarial networks for missing traffic data imputation
    Yang, Bing
    Kang, Yan
    Yuan, YaoYao
    Huang, Xin
    Li, Hao
    [J]. KNOWLEDGE-BASED SYSTEMS, 2021, 215
  • [19] Spatio-Temporal Learning for Video Deblurring based on Two-Stream Generative Adversarial Network
    Song, Liyao
    Wang, Quan
    Lie, Haiwei
    Fan, Jiancun
    Hu, Bingliang
    [J]. NEURAL PROCESSING LETTERS, 2021, 53 (04) : 2701 - 2714
  • [20] Regional spatio-temporal forecasting of particulate matter using autoencoder based generative adversarial network
    Abirami, S.
    Chitra, P.
    [J]. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2022, 36 (05) : 1255 - 1276