Video anomaly detection based on spatio-temporal relationships among objects

被引:16
|
作者
Wang, Yang [1 ]
Liu, Tianying [1 ]
Zhou, Jiaogen [2 ]
Guan, Jihong [1 ]
机构
[1] Tongji Univ, 4800 Caoan Highway, Shanghai 201804, Peoples R China
[2] Huaiyin Normal Univ, Jiangsu Prov Engn Res Ctr Intelligent Monitoring &, 111 West Changjiang Rd, Huaian 223300, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Video anomaly detection; Spatio-temporal relationship; Unsupervised learning; Attention mechanism; memory mechanism; ABNORMAL EVENT DETECTION;
D O I
10.1016/j.neucom.2023.02.027
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Video anomaly detection is to automatically identify predefined anomalous contents (e.g. abnormal objects, behaviors and scenes) in videos. The performance of video anomaly detection can be effectively improved by making the model focus more on the anomalous objects in videos. However, such existing approaches usually rely on pre-trained models, which not only require additional auxiliary information but also face the challenge of anomaly diversity in the real world. In this paper, we propose a new video anomaly detection method based on spatio-temporal relationships among objects. Concretely, we use a fully convolutional encoder-decoder network with symmetric skip connections as the backbone network, which can effectively extract features from the object regions at different scales. In the encoding stage, an attention mechanism is used to enhance the model's understanding of the spatio-temporal relationships among various types of objects in the video. In the decoding stage, a dynamic pattern generator is designed to memorize the inter-object spatio-temporal relationships, which thus enhances the recon-structions of normal samples while making the reconstructions of abnormal samples more difficult. We conduct extensive experiments on three widely used video anomaly detection datasets CUHK Avenue, ShanghaiTech Campus and UCSD Ped2, and the experimental results show that our proposed method can significantly improve the performance, and achieves state-of-the-art overall performance (considering both effectiveness and efficiency). In particular, our method achieves a state-of-the-art AUC of 98.4% on the UCSD Ped2 dataset that consists of various anomalies in real-world scenarios.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页码:141 / 151
页数:11
相关论文
共 50 条
  • [1] Video anomaly detection with spatio-temporal dissociation
    Chang, Yunpeng
    Tu, Zhigang
    Xie, Wei
    Luo, Bin
    Zhang, Shifu
    Sui, Haigang
    Yuan, Junsong
    [J]. PATTERN RECOGNITION, 2022, 122
  • [2] Spatio-Temporal AutoEncoder for Video Anomaly Detection
    Zhao, Yiru
    Deng, Bing
    Shen, Chen
    Liu, Yao
    Lu, Hongtao
    Hua, Xian-Sheng
    [J]. PROCEEDINGS OF THE 2017 ACM MULTIMEDIA CONFERENCE (MM'17), 2017, : 1933 - 1941
  • [3] Transformer with Spatio-Temporal Representation for Video Anomaly Detection
    Sun, Xiaohu
    Chen, Jinyi
    Shen, Xulin
    Li, Hongjun
    [J]. STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, S+SSPR 2022, 2022, 13813 : 213 - 222
  • [4] Spatio-Temporal United Memory for Video Anomaly Detection
    Wang, Yunlong
    Chen, Mingyi
    Li, Jiaxin
    Li, Hongjun
    [J]. STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, S+SSPR 2022, 2022, 13813 : 84 - 93
  • [5] Spatio-Temporal Unity Networking for Video Anomaly Detection
    Li, Yuanyuan
    Cai, Yiheng
    Liu, Jiaqi
    Lang, Shinan
    Zhang, Xinfeng
    [J]. IEEE ACCESS, 2019, 7 : 172425 - 172432
  • [6] Spatio-temporal based video anomaly detection using deep neural networks
    Chaurasia R.K.
    Jaiswal U.C.
    [J]. International Journal of Information Technology, 2023, 15 (3) : 1569 - 1581
  • [7] Video anomaly detection based on attention and efficient spatio-temporal feature extraction
    Rahimpour, Seyed Mohammad
    Kazemi, Mohammad
    Moallem, Payman
    Safayani, Mehran
    [J]. VISUAL COMPUTER, 2024, 40 (10): : 6825 - 6841
  • [8] Spatio-temporal prediction and reconstruction network for video anomaly detection
    Liu, Ting
    Zhang, Chengqing
    Niu, Xiaodong
    Wang, Liming
    [J]. PLOS ONE, 2022, 17 (05):
  • [9] Associative Memory With Spatio-Temporal Enhancement for Video Anomaly Detection
    Zhong, Yuanhong
    Hu, Yongting
    Tang, Panliang
    Wang, Heng
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2023, 30 : 1212 - 1216
  • [10] Video anomaly detection based on a hierarchical activity discovery within spatio-temporal contexts
    Xu, Dan
    Song, Rui
    Wu, Xinyu
    Li, Nannan
    Feng, Wei
    Qian, Huihuan
    [J]. NEUROCOMPUTING, 2014, 143 : 144 - 152