Video Anomaly Detection by Solving Decoupled Spatio-Temporal Jigsaw Puzzles

被引:23
|
作者
Wang, Guodong [1 ,2 ]
Wang, Yunhong [2 ]
Qin, Jie [3 ]
Zhang, Dongming [4 ]
Bao, Xiuguo [4 ]
Huang, Di [1 ,2 ]
机构
[1] Beihang Univ, SKLSDE, Beijing, Peoples R China
[2] Beihang Univ, SCSE, Beijing, Peoples R China
[3] NUAA, CCST, Nanjing, Peoples R China
[4] CNCERT CC, Beijing, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Video anomaly detection; Spatio-temporal jigsaw puzzles; Multi-label classification; EVENT DETECTION;
D O I
10.1007/978-3-031-20080-9_29
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Video Anomaly Detection (VAD) is an important topic in computer vision. Motivated by the recent advances in self-supervised learning, this paper addresses VAD by solving an intuitive yet challenging pretext task, i. e., spatio-temporal jigsaw puzzles, which is cast as a multi-label fine-grained classification problem. Our method exhibits several advantages over existing works: 1) the spatio-temporal jigsaw puzzles are decoupled in terms of spatial and temporal dimensions, responsible for capturing highly discriminative appearance and motion features, respectively; 2) full permutations are used to provide abundant jigsaw puzzles covering various difficulty levels, allowing the network to distinguish subtle spatio-temporal differences between normal and abnormal events; and 3) the pretext task is tackled in an end-to-end manner without relying on any pre-trained models. Our method outperforms state-of-the-art counterparts on three public benchmarks. Especially on ShanghaiTech Campus, the result is superior to reconstruction and prediction-based methods by a large margin.
引用
收藏
页码:494 / 511
页数:18
相关论文
共 50 条
  • [1] SATJiP: Spatial and Augmented Temporal Jigsaw Puzzles for Video Anomaly Detection
    Shen, Liheng
    Matsukalw, Tetsu
    Suzuki, Einoshin
    [J]. ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PT I, PAKDD 2024, 2024, 14645 : 27 - 40
  • [2] Video anomaly detection with spatio-temporal dissociation
    Chang, Yunpeng
    Tu, Zhigang
    Xie, Wei
    Luo, Bin
    Zhang, Shifu
    Sui, Haigang
    Yuan, Junsong
    [J]. PATTERN RECOGNITION, 2022, 122
  • [3] Spatio-Temporal AutoEncoder for Video Anomaly Detection
    Zhao, Yiru
    Deng, Bing
    Shen, Chen
    Liu, Yao
    Lu, Hongtao
    Hua, Xian-Sheng
    [J]. PROCEEDINGS OF THE 2017 ACM MULTIMEDIA CONFERENCE (MM'17), 2017, : 1933 - 1941
  • [4] Spatio-Temporal United Memory for Video Anomaly Detection
    Wang, Yunlong
    Chen, Mingyi
    Li, Jiaxin
    Li, Hongjun
    [J]. STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, S+SSPR 2022, 2022, 13813 : 84 - 93
  • [5] Transformer with Spatio-Temporal Representation for Video Anomaly Detection
    Sun, Xiaohu
    Chen, Jinyi
    Shen, Xulin
    Li, Hongjun
    [J]. STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, S+SSPR 2022, 2022, 13813 : 213 - 222
  • [6] Spatio-Temporal Unity Networking for Video Anomaly Detection
    Li, Yuanyuan
    Cai, Yiheng
    Liu, Jiaqi
    Lang, Shinan
    Zhang, Xinfeng
    [J]. IEEE ACCESS, 2019, 7 : 172425 - 172432
  • [7] Spatio-temporal prediction and reconstruction network for video anomaly detection
    Liu, Ting
    Zhang, Chengqing
    Niu, Xiaodong
    Wang, Liming
    [J]. PLOS ONE, 2022, 17 (05):
  • [8] Associative Memory With Spatio-Temporal Enhancement for Video Anomaly Detection
    Zhong, Yuanhong
    Hu, Yongting
    Tang, Panliang
    Wang, Heng
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2023, 30 : 1212 - 1216
  • [9] Normal Spatio-Temporal Information Enhance for Unsupervised Video Anomaly Detection
    Wang, Jun
    Jia, Di
    Huang, Ziqing
    Zhang, Miaohui
    Ren, Xing
    [J]. NEURAL PROCESSING LETTERS, 2023, 55 (08) : 10727 - 10745
  • [10] Normal Spatio-Temporal Information Enhance for Unsupervised Video Anomaly Detection
    Jun Wang
    Di Jia
    Ziqing Huang
    Miaohui Zhang
    Xing Ren
    [J]. Neural Processing Letters, 2023, 55 : 10727 - 10745