A 3-Gb/s Radar Signal Processor Using an IF-Correlation Technique in 90-nm CMOS

被引:5
|
作者
Li, Jun [1 ]
Kijsanayotin, Tissana [1 ]
Buckwalter, James F. [2 ]
机构
[1] Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA
[2] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
基金
美国国家科学基金会;
关键词
Barker code; intermediate frequency (IF) correlation; pulse compression radar (PCR); SPDT SWITCH; T/R SWITCH; TRANSCEIVER; TRANSMITTER; DESIGN;
D O I
10.1109/TMTT.2016.2574983
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a dual-mode intermediate frequency (IF) signal processing circuit for pulse compression radar (PCR) and symbol recovery. A half-duplex architecture is proposed to support modulation and demodulation of PCR signals. For data communication, the modulator and the demodulator support up to 3-Gb/s QPSK signal. For range sensing, the proposed IF correlation technique supports 1.5-GHz bandwidth (BW) and 3/5/7-b Barker codes for 10-cm range resolution. The circuit includes a high-linearity switch, a modulator, a reconfigurable demodulator/correlator, and an in-phase and quadrature clock signal generator. This proposed system is fabricated with 90-nm CMOS, and each channel can be configured to operate from 200 Mb/s to 1.5 Gb/s with different Barker codes. The maximum power consumption is 54 mW with 1.5-GHz BW (10 cm) in range sensing mode and 49 mW at a rate of 3 Gb/s in data communication mode.
引用
收藏
页码:2171 / 2183
页数:13
相关论文
共 50 条
  • [1] A Reconfigurable 50-Mb/s-1 Gb/s Pulse Compression Radar Signal Processor With Offset Calibration in 90-nm CMOS
    Li, Jun
    Parlak, Mehmet
    Mukai, Hirohito
    Matsuo, Michiaki
    Buckwalter, James F.
    [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2015, 63 (01) : 266 - 278
  • [2] A 1Gb/s Reconfigurable Pulse Compression Radar Signal Processor in 90nm CMOS
    Li, Jun
    Mukai, Hirohito
    Parlak, Mehmet
    Matsuo, Michiaki
    Buckwalter, James F.
    [J]. 2013 IEEE CUSTOM INTEGRATED CIRCUITS CONFERENCE (CICC), 2013,
  • [3] Analog Signal Processing for Pulse Compression Radar in 90-nm CMOS
    Parlak, Mehmet
    Matsuo, Michiaki
    Buckwalter, James F.
    [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2012, 60 (12) : 3810 - 3822
  • [4] A 40-Gb/s decision circuit in 90-nm CMOS
    Chalvatzis, T.
    Yau, K. H. K.
    Schvan, P.
    Yang, M. T.
    Voinigescu, S. P.
    [J]. ESSCIRC 2006: PROCEEDINGS OF THE 32ND EUROPEAN SOLID-STATE CIRCUITS CONFERENCE, 2006, : 512 - +
  • [5] A TCP offload accelerator for 10 Gb/s ethernet in 90-nm CMOS
    Hoskote, Y
    Bloechel, BA
    Dermer, GE
    Erraguntla, V
    Finan, D
    Howard, J
    Klowden, D
    Narendra, SG
    Ruhl, G
    Tschanz, JW
    Vangal, S
    Veeramachaneni, V
    Wilson, H
    Xu, JP
    Borkar, N
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2003, 38 (11) : 1866 - 1875
  • [6] A 90-nm CMOS 4 x 10 Gb/s VCSEL Driver using Asymmetric Emphasis Technique for Optical Interconnection
    Ohhata, Kenichi
    Seki, Kenji
    Imamura, Hironori
    Takeshita, Yoshiki
    Yamashita, Kiichi
    Kanai, Hisaaki
    Chujo, Norio
    [J]. APMC: 2008 ASIA PACIFIC MICROWAVE CONFERENCE (APMC 2008), VOLS 1-5, 2008, : 2031 - +
  • [7] Low power 10 Gb/s serial link transmitter in 90-nm CMOS
    Rylyakov, A
    Rylov, S
    [J]. 2005 IEEE CSIC SYMPOSIUM, TECHNICAL DIGEST, 2005, : 189 - 191
  • [8] A 14-mW 6.25-Gb/s transceiver in 90-nm CMOS
    Poulton, John
    Palmer, Robert
    Fuller, Andrew M.
    Greer, Trey
    Eyles, John
    Dally, William J.
    Horowitz, Mark
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2007, 42 (12) : 2745 - 2757
  • [9] VCSEL driver with synthesis of 25-Gb/s PAM-4 signal in 90-nm CMOS technology
    Jau-Ji Jou
    Tien-Tsorng Shih
    Tsung-Yen Wu
    [J]. Analog Integrated Circuits and Signal Processing, 2023, 114 : 379 - 386
  • [10] VCSEL driver with synthesis of 25-Gb/s PAM-4 signal in 90-nm CMOS technology
    Jou, Jau-Ji
    Shih, Tien-Tsorng
    Wu, Tsung-Yen
    [J]. ANALOG INTEGRATED CIRCUITS AND SIGNAL PROCESSING, 2023, 114 (03) : 379 - 386