1D solitons in cubic-quintic fractional nonlinear Schrodinger model

被引:5
|
作者
Stephanovich, V. A. [1 ]
Olchawa, W. [1 ]
Kirichenko, E., V [1 ]
Dugaev, V. K. [2 ]
机构
[1] Univ Opole, Inst Phys, Ul Oleska 48, PL-45052 Opole, Poland
[2] Rzeszow Univ Technol, Dept Phys & Med Engn, Al Powstancow Warszawy 6, PL-35959 Rzeszow, Poland
关键词
FIELDS;
D O I
10.1038/s41598-022-19332-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We examine the properties of a soliton solution of the fractional Schro dinger equation with cubic-quintic nonlinearity. Using analytical (variational) and numerical arguments, we have shown that the substitution of the ordinary Laplacian in the Schrodinger equation by its fractional counterpart with Levy index alpha permits to stabilize the soliton texture in the wide range of its parameters (nonlinearity coefficients and alpha) values. Our studies of omega(N) dependence (omega is soliton frequency and N its norm) permit to acquire the regions of existence and stability of the fractional soliton solution. For that we use famous Vakhitov-Kolokolov (VK) criterion. The variational results are confirmed by numerical solution of a one-dimensional cubic-quintic nonlinear Schrodinger equation. Direct numerical simulations of the linear stability problem of soliton texture gives the same soliton stability boundary as within variational method. Thus we confirm that simple variational approach combined with VK criterion gives reliable information about soliton structure and stability in our model. Our results may be relevant to both optical solitons and Bose-Einstein condensates in cold atomic gases.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] 1D solitons in cubic-quintic fractional nonlinear Schrödinger model
    V. A. Stephanovich
    W. Olchawa
    E. V. Kirichenko
    V. K. Dugaev
    [J]. Scientific Reports, 12
  • [2] Vortex solitons in fractional nonlinear Schrodinger equation with the cubic-quintic nonlinearity
    Li, Pengfei
    Malomed, Boris A.
    Mihalache, Dumitru
    [J]. CHAOS SOLITONS & FRACTALS, 2020, 137
  • [3] Dynamical stabilization of solitons in cubic-quintic nonlinear Schrodinger model
    Abdullaev, FK
    Garnier, J
    [J]. PHYSICAL REVIEW E, 2005, 72 (03):
  • [4] Solitons and Scattering for the Cubic-Quintic Nonlinear Schrodinger Equation on
    Killip, Rowan
    Oh, Tadahiro
    Pocovnicu, Oana
    Visan, Monica
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 225 (01) : 469 - 548
  • [5] Multistable solitons in the cubic-quintic discrete nonlinear Schrodinger equation
    Carretero-Gonzalez, R.
    Talley, J. D.
    Chong, C.
    Malomed, B. A.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2006, 216 (01) : 77 - 89
  • [6] Solitons for the cubic-quintic nonlinear Schrodinger equation with varying coefficients
    Chen Yuan-Ming
    Ma Song-Hua
    Ma Zheng-Yi
    [J]. CHINESE PHYSICS B, 2012, 21 (05)
  • [7] On vortex and dark solitons in the cubic-quintic nonlinear Schrodinger equation
    Paredes, Angel
    Salgueiro, Jose R.
    Michinel, Humberto
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2022, 437
  • [8] Solitons of (1+1)D cubic-quintic nonlinear Schrodinger equation with PT - symmetric potentials
    Goksel, Izzet
    Antar, Nalan
    Bakirtas, Ilkay
    [J]. OPTICS COMMUNICATIONS, 2015, 354 : 277 - 285
  • [9] Optical Solitons for The Cubic-Quintic Nonlinear Schrodinger Equation<bold> </bold>
    Al-Ghafri, K. S.
    Krishnan, E. V.
    Biswas, Anjan
    [J]. ICNPAA 2018 WORLD CONGRESS: 12TH INTERNATIONAL CONFERENCE ON MATHEMATICAL PROBLEMS IN ENGINEERING, AEROSPACE AND SCIENCES, 2018, 2046
  • [10] Stability of spinning ring solitons of the cubic-quintic nonlinear Schrodinger equation
    Towers, I
    Buryak, AV
    Sammut, RA
    Malomed, BA
    Crasovan, LC
    Mihalache, D
    [J]. PHYSICS LETTERS A, 2001, 288 (5-6) : 292 - 298