1D solitons in cubic-quintic fractional nonlinear Schrödinger model

被引:0
|
作者
V. A. Stephanovich
W. Olchawa
E. V. Kirichenko
V. K. Dugaev
机构
[1] University of Opole ul.,Institute of Physics
[2] Rzeszów University of Technology,Department of Physics and Medical Engineering
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We examine the properties of a soliton solution of the fractional Schrö dinger equation with cubic-quintic nonlinearity. Using analytical (variational) and numerical arguments, we have shown that the substitution of the ordinary Laplacian in the Schrödinger equation by its fractional counterpart with Lévy index α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document} permits to stabilize the soliton texture in the wide range of its parameters (nonlinearity coefficients and α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document}) values. Our studies of ω(N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega (N)$$\end{document} dependence (ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega$$\end{document} is soliton frequency and N its norm) permit to acquire the regions of existence and stability of the fractional soliton solution. For that we use famous Vakhitov-Kolokolov (VK) criterion. The variational results are confirmed by numerical solution of a one-dimensional cubic-quintic nonlinear Schrödinger equation. Direct numerical simulations of the linear stability problem of soliton texture gives the same soliton stability boundary as within variational method. Thus we confirm that simple variational approach combined with VK criterion gives reliable information about soliton structure and stability in our model. Our results may be relevant to both optical solitons and Bose-Einstein condensates in cold atomic gases.
引用
收藏
相关论文
共 50 条
  • [1] 1D solitons in cubic-quintic fractional nonlinear Schrodinger model
    Stephanovich, V. A.
    Olchawa, W.
    Kirichenko, E., V
    Dugaev, V. K.
    [J]. SCIENTIFIC REPORTS, 2022, 12 (01)
  • [2] Solitons for the cubic-quintic nonlinear Schrdinger equation with varying coefficients
    陈元明
    马松华
    马正义
    [J]. Chinese Physics B, 2012, (05) : 137 - 143
  • [3] Solitons for the cubic-quintic nonlinear Schrödinger equation with Raman effect in nonlinear optics
    Ping Wang
    Tao Shang
    Li Feng
    Yingjie Du
    [J]. Optical and Quantum Electronics, 2014, 46 : 1117 - 1126
  • [4] On the Existence of Dark Solitons in a Cubic-Quintic Nonlinear Schrödinger Equation with a Periodic Potential
    Pedro J. Torres
    Vladimir V. Konotop
    [J]. Communications in Mathematical Physics, 2008, 282 : 1 - 9
  • [5] Fundamental and dipole gap solitons and their dynamics in the cubic-quintic fractional nonlinear Schrödinger model with a PT-symmetric lattice
    Wang, Li
    Zeng, Jianhua
    Zhu, Yi
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2024, 465
  • [6] Nonlocal Cubic-Quintic Nonlinear Schrödinger Equation: Symmetry Breaking Solitons and Its Trajectory Rotation
    P. Sakthivinayagam
    [J]. Physics of Wave Phenomena, 2022, 30 : 387 - 396
  • [7] Bright solitons for the coupled cubic-quintic non-linear Schrödinger equations
    Xi-Yang Xie
    Bo Tian
    Ya Sun
    Lei Liu
    Yan Jiang
    [J]. Optical and Quantum Electronics, 2016, 48
  • [8] A finite difference scheme for (2+1)D cubic-quintic nonlinear Schrödinger equations with nonlinear damping
    Ha Le, Anh
    Huynh, Toan T.
    Nguyen, Quan M.
    [J]. APPLIED NUMERICAL MATHEMATICS, 2024, 205 : 215 - 239
  • [9] The cubic-quintic nonlinear Schrödinger equation with inverse-square potential
    Ardila, Alex H.
    Murphy, Jason
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2024, 31 (05):
  • [10] Dynamics of localized electromagnetic waves for a cubic-quintic nonlinear Schrödinger equation
    Yakada Douvagai
    Gambo Salathiel
    Serge Yamigno Betchewe
    Kofane Timoleon Doka
    [J]. The European Physical Journal Plus, 130