Solitons of (1+1)D cubic-quintic nonlinear Schrodinger equation with PT - symmetric potentials

被引:19
|
作者
Goksel, Izzet [1 ]
Antar, Nalan [1 ]
Bakirtas, Ilkay [1 ]
机构
[1] Istanbul Tech Univ, Dept Math, TR-34469 Istanbul, Turkey
关键词
CQNLS; Optical soliton; PT; -; symmetry; REAL;
D O I
10.1016/j.optcom.2015.05.051
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, the existence and stability properties of optical solitons on parity-time (PT) symmetric lattices are investigated. The governing equation for the physical model is the (1 + 1)D cubic-quintic nonlinear Schrodinger equation (CQNLS) with a PT - symmetric potential. The solution to this equation is obtained both analytically and numerically by spectral methods. The numerical existence of fundamental solitons on PT - symmetric lattices is shown for various medium and potential depths. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:277 / 285
页数:9
相关论文
共 50 条
  • [1] Solitons and Scattering for the Cubic-Quintic Nonlinear Schrodinger Equation on
    Killip, Rowan
    Oh, Tadahiro
    Pocovnicu, Oana
    Visan, Monica
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 225 (01) : 469 - 548
  • [2] 1D solitons in cubic-quintic fractional nonlinear Schrodinger model
    Stephanovich, V. A.
    Olchawa, W.
    Kirichenko, E., V
    Dugaev, V. K.
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [3] Multistable solitons in the cubic-quintic discrete nonlinear Schrodinger equation
    Carretero-Gonzalez, R.
    Talley, J. D.
    Chong, C.
    Malomed, B. A.
    PHYSICA D-NONLINEAR PHENOMENA, 2006, 216 (01) : 77 - 89
  • [4] Solitons for the cubic-quintic nonlinear Schrodinger equation with varying coefficients
    Chen Yuan-Ming
    Ma Song-Hua
    Ma Zheng-Yi
    CHINESE PHYSICS B, 2012, 21 (05)
  • [5] On vortex and dark solitons in the cubic-quintic nonlinear Schrodinger equation
    Paredes, Angel
    Salgueiro, Jose R.
    Michinel, Humberto
    PHYSICA D-NONLINEAR PHENOMENA, 2022, 437
  • [6] Symmetry breaking of solitons in the PT-symmetric nonlinear Schrodinger equation with the cubic-quintic competing saturable nonlinearity
    Bo, Wen-Bo
    Wang, Ru-Ru
    Liu, Wei
    Wang, Yue-Yue
    CHAOS, 2022, 32 (09)
  • [7] Gauss-type solitons of (1+1)-dimensional cubic-quintic-septimal nonlinear Schrodinger equation with Gauss-type PT-symmetric potentials
    Li, Ji-tao
    Zhu, Yu
    Qin, Wei
    OPTIK, 2018, 172 : 708 - 713
  • [8] Optical Solitons for The Cubic-Quintic Nonlinear Schrodinger Equation<bold> </bold>
    Al-Ghafri, K. S.
    Krishnan, E. V.
    Biswas, Anjan
    ICNPAA 2018 WORLD CONGRESS: 12TH INTERNATIONAL CONFERENCE ON MATHEMATICAL PROBLEMS IN ENGINEERING, AEROSPACE AND SCIENCES, 2018, 2046
  • [9] Stability of spinning ring solitons of the cubic-quintic nonlinear Schrodinger equation
    Towers, I
    Buryak, AV
    Sammut, RA
    Malomed, BA
    Crasovan, LC
    Mihalache, D
    PHYSICS LETTERS A, 2001, 288 (5-6) : 292 - 298
  • [10] Interaction of Solitons With Delta Potential In The Cubic-Quintic Nonlinear Schrodinger Equation
    Aklan, Nor Amirah Busul
    Umarov, Bakhram
    2015 INTERNATIONAL CONFERENCE ON RESEARCH AND EDUCATION IN MATHEMATICS (ICREM7), 2015, : 93 - 96