Solitons of (1+1)D cubic-quintic nonlinear Schrodinger equation with PT - symmetric potentials

被引:19
|
作者
Goksel, Izzet [1 ]
Antar, Nalan [1 ]
Bakirtas, Ilkay [1 ]
机构
[1] Istanbul Tech Univ, Dept Math, TR-34469 Istanbul, Turkey
关键词
CQNLS; Optical soliton; PT; -; symmetry; REAL;
D O I
10.1016/j.optcom.2015.05.051
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, the existence and stability properties of optical solitons on parity-time (PT) symmetric lattices are investigated. The governing equation for the physical model is the (1 + 1)D cubic-quintic nonlinear Schrodinger equation (CQNLS) with a PT - symmetric potential. The solution to this equation is obtained both analytically and numerically by spectral methods. The numerical existence of fundamental solitons on PT - symmetric lattices is shown for various medium and potential depths. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:277 / 285
页数:9
相关论文
共 50 条
  • [31] Vortex solitons of the (3+1)-dimensional spatially modulated cubic-quintic nonlinear Schrodinger equation with the transverse modulation
    Chen, Rui-Pin
    Dai, Chao-Qing
    NONLINEAR DYNAMICS, 2017, 90 (03) : 1563 - 1570
  • [32] Cusp solitons in the cubic quintic nonlinear Schrodinger equation
    Palacios, SL
    JOURNAL OF NONLINEAR OPTICAL PHYSICS & MATERIALS, 2001, 10 (03) : 293 - 296
  • [33] New optical solitons in high-order dispersive cubic-quintic nonlinear Schrodinger equation
    Li, HM
    Xu, YS
    Lin, J
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2004, 41 (06) : 829 - 832
  • [34] Bright solitons of the nonautonomous cubic-quintic nonlinear Schrodinger equation with sign-reversal nonlinearity
    Loomba, Shally
    Pal, Ritu
    Kumar, C. N.
    PHYSICAL REVIEW A, 2015, 92 (03):
  • [35] Solitons for the cubic-quintic nonlinear Schrodinger equation with time- and space-modulated coefficients
    Belmonte-Beitia, J.
    Cuevas, J.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (16)
  • [36] Chirped Peregrine solitons in a class of cubic-quintic nonlinear Schrodinger equations
    Chen, Shihua
    Baronio, Fabio
    Soto-Crespo, Jose M.
    Liu, Yi
    Grelu, Philippe
    PHYSICAL REVIEW E, 2016, 93 (06)
  • [37] Nonlocal Cubic-Quintic Nonlinear Schrodinger Equation: Symmetry Breaking Solitons and Its Trajectory Rotation
    Sakthivinayagam, P.
    PHYSICS OF WAVE PHENOMENA, 2022, 30 (06) : 387 - 396
  • [38] Dynamics of cubic-quintic nonlinear Schrodinger equation with different parameters
    Hua, Wei
    Liu, Xue-Shen
    Liu, Shi-Xing
    CHINESE PHYSICS B, 2016, 25 (05)
  • [39] A variational approach in the dissipative cubic-quintic nonlinear Schrodinger equation
    Freitas, DS
    De Oliveira, JR
    MODERN PHYSICS LETTERS B, 2002, 16 (1-2): : 27 - 32
  • [40] Drag force in bimodal cubic-quintic nonlinear Schrodinger equation
    Feijoo, David
    Ordonez, Ismael
    Paredes, Angel
    Michinel, Humberto
    PHYSICAL REVIEW E, 2014, 90 (03):