Solitons of (1+1)D cubic-quintic nonlinear Schrodinger equation with PT - symmetric potentials

被引:19
|
作者
Goksel, Izzet [1 ]
Antar, Nalan [1 ]
Bakirtas, Ilkay [1 ]
机构
[1] Istanbul Tech Univ, Dept Math, TR-34469 Istanbul, Turkey
关键词
CQNLS; Optical soliton; PT; -; symmetry; REAL;
D O I
10.1016/j.optcom.2015.05.051
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, the existence and stability properties of optical solitons on parity-time (PT) symmetric lattices are investigated. The governing equation for the physical model is the (1 + 1)D cubic-quintic nonlinear Schrodinger equation (CQNLS) with a PT - symmetric potential. The solution to this equation is obtained both analytically and numerically by spectral methods. The numerical existence of fundamental solitons on PT - symmetric lattices is shown for various medium and potential depths. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:277 / 285
页数:9
相关论文
共 50 条
  • [21] Optical solitons for the higher order dispersive cubic-quintic nonlinear Schrodinger equation
    Dai, CQ
    Meng, JP
    Zhang, JF
    CHINESE JOURNAL OF PHYSICS, 2005, 43 (03) : 457 - 463
  • [22] SYMMETRY BREAKING OF SOLITONS IN PT-SYMMETRIC POTENTIALS WITH COMPETING CUBIC-QUINTIC NONLINEARITY
    Li, Pengfei
    Mihalache, Dumitru
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2018, 19 (01): : 61 - 68
  • [23] Eigenvalue cutoff in the cubic-quintic nonlinear Schrodinger equation
    Prytula, Vladyslav
    Vekslerchik, Vadym
    Perez-Garcia, Victor M.
    PHYSICAL REVIEW E, 2008, 78 (02):
  • [24] Pseudorecurrence and chaos of cubic-quintic nonlinear Schrodinger equation
    Zhou, CT
    Lai, CH
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1996, 7 (06): : 775 - 786
  • [25] Akhmediev Breathers and Kuznetsov-Ma Solitons in the Cubic-Quintic Nonlinear Schrodinger Equation
    Pan, Changchang
    Wu, Gangzhou
    Zhang, Lei
    Zhang, Huicong
    IEEE PHOTONICS JOURNAL, 2024, 16 (05):
  • [26] Dynamical stabilization of solitons in cubic-quintic nonlinear Schrodinger model
    Abdullaev, FK
    Garnier, J
    PHYSICAL REVIEW E, 2005, 72 (03):
  • [27] Bistability and instability of dark-antidark solitons in the cubic-quintic nonlinear Schrodinger equation
    Crosta, M.
    Fratalocchi, A.
    Trillo, S.
    PHYSICAL REVIEW A, 2011, 84 (06):
  • [28] Stable solitons in the one- and two-dimensional generalized cubic-quintic nonlinear Schrodinger equation with fourth-order diffraction and PT-symmetric potentials
    Tchepemen Nkouessi, Nathan
    Tiofack Latchio, Gaston Camus
    Mohamadou, Alidou
    EUROPEAN PHYSICAL JOURNAL D, 2020, 74 (02):
  • [29] Combined soliton solutions of a (1+1)-dimensional weakly nonlocal conformable fractional nonlinear Schrodinger equation in the cubic-quintic nonlinear material
    Chen, Yi-Xiang
    Xiao, Xiao
    OPTICAL AND QUANTUM ELECTRONICS, 2021, 53 (01)
  • [30] Exact solutions for the cubic-quintic nonlinear Schrodinger equation
    Zhu, Jia-Min
    Ma, Zheng-Yi
    CHAOS SOLITONS & FRACTALS, 2007, 33 (03) : 958 - 964