Eigenvalue cutoff in the cubic-quintic nonlinear Schrodinger equation

被引:14
|
作者
Prytula, Vladyslav [1 ,3 ]
Vekslerchik, Vadym [1 ,2 ,3 ]
Perez-Garcia, Victor M. [1 ,3 ]
机构
[1] Univ Castilla La Mancha, Dept Matemat, ETS Ingenieros Ind, E-13071 Ciudad Real, Spain
[2] Natl Acad Sci Ukraine, A Ya Usikov Inst Radiophys & Elect, UA-61085 Kharkov, Ukraine
[3] Univ Castilla La Mancha, Inst Matemat Aplicada Ciencia & Ingn, E-13071 Ciudad Real, Spain
来源
PHYSICAL REVIEW E | 2008年 / 78卷 / 02期
关键词
D O I
10.1103/PhysRevE.78.027601
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Using theoretical arguments, we prove the numerically well-known fact that the eigenvalues of all localized stationary solutions of the cubic-quintic (2+1)-dimensional nonlinear Schrodinger equation exhibit an upper cutoff value. The existence of the cutoff is inferred using Gagliardo-Nirenberg and Holder inequalities together with Pohozaev identities. We also show that, in the limit of eigenvalues close to zero, the eigenstates of the cubic-quintic nonlinear Schrodinger equation behave similarly to those of the cubic nonlinear Schrodinger equation.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Pseudorecurrence and chaos of cubic-quintic nonlinear Schrodinger equation
    Zhou, CT
    Lai, CH
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1996, 7 (06): : 775 - 786
  • [2] Solitons and Scattering for the Cubic-Quintic Nonlinear Schrodinger Equation on
    Killip, Rowan
    Oh, Tadahiro
    Pocovnicu, Oana
    Visan, Monica
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 225 (01) : 469 - 548
  • [3] Exact solutions for the cubic-quintic nonlinear Schrodinger equation
    Zhu, Jia-Min
    Ma, Zheng-Yi
    [J]. CHAOS SOLITONS & FRACTALS, 2007, 33 (03) : 958 - 964
  • [4] Dynamics of cubic-quintic nonlinear Schrodinger equation with different parameters
    Hua, Wei
    Liu, Xue-Shen
    Liu, Shi-Xing
    [J]. CHINESE PHYSICS B, 2016, 25 (05)
  • [5] Solitons for the cubic-quintic nonlinear Schrodinger equation with varying coefficients
    Chen Yuan-Ming
    Ma Song-Hua
    Ma Zheng-Yi
    [J]. CHINESE PHYSICS B, 2012, 21 (05)
  • [6] A variational approach in the dissipative cubic-quintic nonlinear Schrodinger equation
    Freitas, DS
    De Oliveira, JR
    [J]. MODERN PHYSICS LETTERS B, 2002, 16 (1-2): : 27 - 32
  • [7] On vortex and dark solitons in the cubic-quintic nonlinear Schrodinger equation
    Paredes, Angel
    Salgueiro, Jose R.
    Michinel, Humberto
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2022, 437
  • [8] Multistable solitons in the cubic-quintic discrete nonlinear Schrodinger equation
    Carretero-Gonzalez, R.
    Talley, J. D.
    Chong, C.
    Malomed, B. A.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2006, 216 (01) : 77 - 89
  • [9] New exact solutions for the cubic-quintic nonlinear Schrodinger equation
    Peng, Yan-Ze
    Krishnan, E. V.
    [J]. COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2007, 5 (02) : 243 - 252
  • [10] Drag force in bimodal cubic-quintic nonlinear Schrodinger equation
    Feijoo, David
    Ordonez, Ismael
    Paredes, Angel
    Michinel, Humberto
    [J]. PHYSICAL REVIEW E, 2014, 90 (03):