Combined parameter and state estimation in particle filtering

被引:0
|
作者
Yang, Xiaojun [1 ,2 ]
Shi, Kunlin [1 ]
Huang, Tao [1 ]
Xing, Keyi [2 ]
机构
[1] Xian Inst Electromech Informat Technol, Xian, Peoples R China
[2] Xi An Jiao Tong Univ, Syst Engn Inst, Xian, Peoples R China
关键词
parameter estimation; particle filtering; adaptive estimation; sequential Monte Carlo;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, an adaptive estimation algorithm is proposed for non-linear dynamic systems with unknown static parameters based on combination of particle filtering. The estimates of static parameters are obtained by state samples and maximum-likelihood estimation in particle filtering, and the stochastic approximation is used to approximate the gradient of cost function. The proposed algorithm achieves combined state and parameters estimation. Simulation result demonstrates the efficiency of the algorithm.
引用
收藏
页码:1614 / +
页数:2
相关论文
共 50 条
  • [1] Particle filters for combined state and parameter estimation
    Chan, HY
    Kouritzin, MA
    [J]. SIGNAL PROCESSING, SENSOR FUSION, AND TARGET RECOGNITION X, 2001, 4380 : 244 - 252
  • [2] Joint state and parameter estimation in particle filtering and stochastic optimization
    Yang X.
    Xing K.
    Shi K.
    Pan Q.
    [J]. Journal of Control Theory and Applications, 2008, 6 (2): : 215 - 220
  • [3] Joint state and parameter estimation in particle filtering and stochastic optimization
    Xiaojun YANG 1
    2.Xi’an Institute of Electromechanical Information Technology
    3.School of Automation
    [J]. Control Theory and Technology, 2008, (02) : 215 - 220
  • [4] Improved Particle Filtering for State and Parameter Estimation- CSTR Model
    Mansouri, Majdi
    Nounou, Hazem
    Nounou, Mohamed
    [J]. 2014 11TH INTERNATIONAL MULTI-CONFERENCE ON SYSTEMS, SIGNALS & DEVICES (SSD), 2014,
  • [5] Extension Particle Filtering Algorithm for State and Parameter Estimation in Dynamic Control Process
    Gao Xian-zhong
    Hou Zhong-xi
    Ren Bo-tao
    [J]. CCDC 2009: 21ST CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, PROCEEDINGS, 2009, : 1133 - 1137
  • [6] Convolution particle filtering for parameter estimation in general state-space models
    Campillo, Fabien
    Rossi, Vivien
    [J]. PROCEEDINGS OF THE 45TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2006, : 2159 - 2164
  • [7] Particle Filtering for State and Parameter Estimation in Gas Turbine Engine Fault Diagnostics
    Daroogheh, Najmeh
    Meskin, Nader
    Khorasani, Khashayar
    [J]. 2013 AMERICAN CONTROL CONFERENCE (ACC), 2013, : 4343 - 4349
  • [8] PARTICLE FILTERING FOR BAYESIAN PARAMETER ESTIMATION IN A HIGH DIMENSIONAL STATE SPACE MODEL
    Miguez, Joaquin
    Crisan, Dan
    Marino, Ines P.
    [J]. 2015 23RD EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2015, : 1241 - 1245
  • [9] Combined state and parameter estimation for Hammerstein systems with time delay using the Kalman filtering
    Ma, Junxia
    Ding, Feng
    Xiong, Weili
    Yang, Erfu
    [J]. INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2017, 31 (08) : 1139 - 1151
  • [10] COMBINED FILTERING AND PARAMETER-ESTIMATION - APPROXIMATIONS AND ROBUSTNESS
    RUNGGALDIER, WJ
    VISENTIN, C
    [J]. AUTOMATICA, 1990, 26 (02) : 401 - 404